一种采用归一化绝对估计误差的变步长算法

Dong-Wook Kim, Han-Bit Kang, M. Eun, Jongsoo Choi
{"title":"一种采用归一化绝对估计误差的变步长算法","authors":"Dong-Wook Kim, Han-Bit Kang, M. Eun, Jongsoo Choi","doi":"10.1109/MWSCAS.1995.510255","DOIUrl":null,"url":null,"abstract":"Variable step size LMS (VS-LMS) algorithms improve performance of LMS algorithm by means of varying the step size. This paper presents a new VS-LMS algorithm using normalized absolute estimation error. The performance of the proposed algorithm is analyzed theoretically and estimated through simulations. Based on the theoretical analysis and computer simulations, the proposed algorithm is shown to be effective compared to conventional VS-LMS algorithms.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A variable step size algorithm using normalized absolute estimation error\",\"authors\":\"Dong-Wook Kim, Han-Bit Kang, M. Eun, Jongsoo Choi\",\"doi\":\"10.1109/MWSCAS.1995.510255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable step size LMS (VS-LMS) algorithms improve performance of LMS algorithm by means of varying the step size. This paper presents a new VS-LMS algorithm using normalized absolute estimation error. The performance of the proposed algorithm is analyzed theoretically and estimated through simulations. Based on the theoretical analysis and computer simulations, the proposed algorithm is shown to be effective compared to conventional VS-LMS algorithms.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可变步长LMS (VS-LMS)算法通过改变步长来提高LMS算法的性能。本文提出了一种新的基于归一化绝对估计误差的VS-LMS算法。对该算法的性能进行了理论分析和仿真评估。理论分析和计算机仿真表明,与传统的VS-LMS算法相比,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A variable step size algorithm using normalized absolute estimation error
Variable step size LMS (VS-LMS) algorithms improve performance of LMS algorithm by means of varying the step size. This paper presents a new VS-LMS algorithm using normalized absolute estimation error. The performance of the proposed algorithm is analyzed theoretically and estimated through simulations. Based on the theoretical analysis and computer simulations, the proposed algorithm is shown to be effective compared to conventional VS-LMS algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A band-pass sigma-delta modulator architecture for digital radio Forecasting epidemiological time series with backpropagation neural networks Analog blocks for high-speed oversampled A/D converters Designing efficient redundant arithmetic processors for DSP applications Using neural networks for automatic speaker recognition: a practical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1