一种基于lstm多层嵌入的养老聊天机器人

Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang
{"title":"一种基于lstm多层嵌入的养老聊天机器人","authors":"Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang","doi":"10.1109/ICOT.2017.8336091","DOIUrl":null,"url":null,"abstract":"According to demographic changes, the services designed for the elderly are becoming more needed than before and increasingly important. In previous work, social media or community-based question-answer data were generally used to build the chatbot. In this study, we collected the MHMC chitchat dataset from daily conversations with the elderly. Since people are free to say anything to the system, the collected sentences are converted into patterns in the preprocessing part to cover the variability of conversational sentences. Then, an LSTM-based multi-layer embedding model is used to extract the semantic information between words and sentences in a single turn with multiple sentences when chatting with the elderly. Finally, the Euclidean distance is employed to select a proper question pattern, which is further used to select the corresponding answer to respond to the elderly. For performance evaluation, five-fold cross-validation scheme was employed for training and evaluation. Experimental results show that the proposed method achieved an accuracy of 79.96% for top-1 response selection, which outperformed the traditional Okapi model.","PeriodicalId":297245,"journal":{"name":"2017 International Conference on Orange Technologies (ICOT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A chatbot using LSTM-based multi-layer embedding for elderly care\",\"authors\":\"Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang\",\"doi\":\"10.1109/ICOT.2017.8336091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to demographic changes, the services designed for the elderly are becoming more needed than before and increasingly important. In previous work, social media or community-based question-answer data were generally used to build the chatbot. In this study, we collected the MHMC chitchat dataset from daily conversations with the elderly. Since people are free to say anything to the system, the collected sentences are converted into patterns in the preprocessing part to cover the variability of conversational sentences. Then, an LSTM-based multi-layer embedding model is used to extract the semantic information between words and sentences in a single turn with multiple sentences when chatting with the elderly. Finally, the Euclidean distance is employed to select a proper question pattern, which is further used to select the corresponding answer to respond to the elderly. For performance evaluation, five-fold cross-validation scheme was employed for training and evaluation. Experimental results show that the proposed method achieved an accuracy of 79.96% for top-1 response selection, which outperformed the traditional Okapi model.\",\"PeriodicalId\":297245,\"journal\":{\"name\":\"2017 International Conference on Orange Technologies (ICOT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Orange Technologies (ICOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2017.8336091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2017.8336091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

根据人口结构的变化,为老年人设计的服务比以前更有需要,也越来越重要。在之前的工作中,通常使用社交媒体或基于社区的问答数据来构建聊天机器人。在这项研究中,我们从与老年人的日常对话中收集了MHMC聊天数据集。由于人们可以自由地对系统说任何话,因此在预处理部分将收集到的句子转换为模式,以覆盖会话句子的可变性。然后,利用基于lstm的多层嵌入模型,提取与老年人聊天时单回合多句词与句子之间的语义信息;最后,利用欧几里得距离选择合适的问题模式,进而选择相应的答案来回应老年人。在绩效评估方面,采用五重交叉验证方案进行培训和评估。实验结果表明,该方法对top-1响应的选择准确率达到79.96%,优于传统的Okapi模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A chatbot using LSTM-based multi-layer embedding for elderly care
According to demographic changes, the services designed for the elderly are becoming more needed than before and increasingly important. In previous work, social media or community-based question-answer data were generally used to build the chatbot. In this study, we collected the MHMC chitchat dataset from daily conversations with the elderly. Since people are free to say anything to the system, the collected sentences are converted into patterns in the preprocessing part to cover the variability of conversational sentences. Then, an LSTM-based multi-layer embedding model is used to extract the semantic information between words and sentences in a single turn with multiple sentences when chatting with the elderly. Finally, the Euclidean distance is employed to select a proper question pattern, which is further used to select the corresponding answer to respond to the elderly. For performance evaluation, five-fold cross-validation scheme was employed for training and evaluation. Experimental results show that the proposed method achieved an accuracy of 79.96% for top-1 response selection, which outperformed the traditional Okapi model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-based Automatic Speech Recognition systems for Southeast Asian Languages A survey of deep learning for polyphonic sound event detection The importance of at-home telemonitoring of vital signs for patients with chronic conditions Analysis of the compliance with the measurement protocols scheduled in a telemonitoring system Fiber optic plasmon resonance sensor for recording action potential; A theoretically evaluated proposal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1