使用明确用户偏好的情绪增强神经协同过滤模型

Ceren Dursun, Alper Ozcan
{"title":"使用明确用户偏好的情绪增强神经协同过滤模型","authors":"Ceren Dursun, Alper Ozcan","doi":"10.1109/HORA58378.2023.10156719","DOIUrl":null,"url":null,"abstract":"Ahstract-The integration of recommender systems contributes to the tourism industry as it provides tailored recommendations to users, assisting them in discovering and selecting the most suitable accommodation options based on their particular needs and preferences. By providing personalized recommendations that are tailored to each user's preferences and needs, hotel rec-ommendation systems could assist in reducing the time and effort required to find the best hotel options. In addition, users could discover new and relevant accommodation alternatives that they might not have previously considered. Despite the importance of the reasons underlying user preferences, existing review-based recommendation systems often neglect the importance of sentiment words linked to related item aspects. To address this need, this study presents a sentiment-enhanced hotel recommender system using neural collaborative filtering that incorporates information derived from both textual reviews and user-hotel relationships. This study employs a neural collaborative filtering approach to learn the relationship between user-hotel interactions and a sentiment-enhanced recommendation system. In regards to the experiment conducted in this study, our method enhances the model's ability to capture user preferences and item features through information from sentiment-enhanced text reviews in comparison to sub-ratings generated by users. Aspect-based sentiment analysis improves personalized hotel recommendations by taking into account the sentiment toward specific aspects of the hotel, such as cleanliness, service, or location.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment-enhanced Neural Collaborative Filtering Models Using Explicit User Preferences\",\"authors\":\"Ceren Dursun, Alper Ozcan\",\"doi\":\"10.1109/HORA58378.2023.10156719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract-The integration of recommender systems contributes to the tourism industry as it provides tailored recommendations to users, assisting them in discovering and selecting the most suitable accommodation options based on their particular needs and preferences. By providing personalized recommendations that are tailored to each user's preferences and needs, hotel rec-ommendation systems could assist in reducing the time and effort required to find the best hotel options. In addition, users could discover new and relevant accommodation alternatives that they might not have previously considered. Despite the importance of the reasons underlying user preferences, existing review-based recommendation systems often neglect the importance of sentiment words linked to related item aspects. To address this need, this study presents a sentiment-enhanced hotel recommender system using neural collaborative filtering that incorporates information derived from both textual reviews and user-hotel relationships. This study employs a neural collaborative filtering approach to learn the relationship between user-hotel interactions and a sentiment-enhanced recommendation system. In regards to the experiment conducted in this study, our method enhances the model's ability to capture user preferences and item features through information from sentiment-enhanced text reviews in comparison to sub-ratings generated by users. Aspect-based sentiment analysis improves personalized hotel recommendations by taking into account the sentiment toward specific aspects of the hotel, such as cleanliness, service, or location.\",\"PeriodicalId\":247679,\"journal\":{\"name\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA58378.2023.10156719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10156719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:推荐系统的集成有助于旅游业,因为它为用户提供量身定制的推荐,帮助他们根据自己的特殊需求和偏好发现和选择最合适的住宿选择。酒店推荐系统可以根据每个用户的喜好和需求提供个性化的推荐,从而帮助用户减少寻找最佳酒店选择所需的时间和精力。此外,用户可以发现他们以前可能没有考虑过的新的和相关的住宿选择。尽管用户偏好背后的原因很重要,但现有的基于评论的推荐系统往往忽视了与相关项目方面相关的情感词的重要性。为了满足这一需求,本研究提出了一个情感增强的酒店推荐系统,该系统使用神经协同过滤,结合了来自文本评论和用户-酒店关系的信息。本研究采用神经协同过滤方法来学习用户-酒店交互与情感增强推荐系统之间的关系。关于本研究中进行的实验,与用户生成的子评级相比,我们的方法通过来自情感增强文本评论的信息增强了模型捕获用户偏好和项目特征的能力。基于方面的情感分析通过考虑对酒店特定方面(如清洁度、服务或位置)的情感来改进个性化的酒店推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment-enhanced Neural Collaborative Filtering Models Using Explicit User Preferences
Ahstract-The integration of recommender systems contributes to the tourism industry as it provides tailored recommendations to users, assisting them in discovering and selecting the most suitable accommodation options based on their particular needs and preferences. By providing personalized recommendations that are tailored to each user's preferences and needs, hotel rec-ommendation systems could assist in reducing the time and effort required to find the best hotel options. In addition, users could discover new and relevant accommodation alternatives that they might not have previously considered. Despite the importance of the reasons underlying user preferences, existing review-based recommendation systems often neglect the importance of sentiment words linked to related item aspects. To address this need, this study presents a sentiment-enhanced hotel recommender system using neural collaborative filtering that incorporates information derived from both textual reviews and user-hotel relationships. This study employs a neural collaborative filtering approach to learn the relationship between user-hotel interactions and a sentiment-enhanced recommendation system. In regards to the experiment conducted in this study, our method enhances the model's ability to capture user preferences and item features through information from sentiment-enhanced text reviews in comparison to sub-ratings generated by users. Aspect-based sentiment analysis improves personalized hotel recommendations by taking into account the sentiment toward specific aspects of the hotel, such as cleanliness, service, or location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Urban Sounds with PSO and WO Based Feature Selection Methods Modeling a system determining the fastest way to get from one point to another by public transport NNA and Activation Equation-Based Prediction of New COVID-19 Infections Plaka tanıma sistemleri ve hibrit bir sistem önerisi Color Image Encryption Using a Sine Variation of the Logistic Map for S-Box and Key Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1