Tina He, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P. Feng
{"title":"双栅碳化硅(SiC)横向纳米机电开关","authors":"Tina He, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P. Feng","doi":"10.1109/NEMS.2013.6559791","DOIUrl":null,"url":null,"abstract":"We present demonstration and experimental results of four-terminal nanoscale electromechanical switches with a novel dual-gate design in a lateral configuration based on polycrystalline silicon carbide (poly-SiC) nanocantilevers. The switches operate at both room temperature and high temperature up to T 500oC in ambient air with enhanced control over the distributed electrostatic actuation force, and also enable recovery from stiction at contact. We have experimentally demonstrated multiple switching cycles of these nanomechanical switches with different actuation control schemes, and active release from stiction by exploiting a repulsive mechanism. In combination with modeling of cantilever deflection, the experiments help reveal the coupled electromechanical behavior of the device when making contact during switching operations, and suggest possible correlation between the switch degradation observed over cycles and the elastic deformation of nanocantilevers.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dual-gate silicon carbide (SiC) lateral nanoelectromechanical switches\",\"authors\":\"Tina He, R. Yang, S. Rajgopal, S. Bhunia, M. Mehregany, P. Feng\",\"doi\":\"10.1109/NEMS.2013.6559791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present demonstration and experimental results of four-terminal nanoscale electromechanical switches with a novel dual-gate design in a lateral configuration based on polycrystalline silicon carbide (poly-SiC) nanocantilevers. The switches operate at both room temperature and high temperature up to T 500oC in ambient air with enhanced control over the distributed electrostatic actuation force, and also enable recovery from stiction at contact. We have experimentally demonstrated multiple switching cycles of these nanomechanical switches with different actuation control schemes, and active release from stiction by exploiting a repulsive mechanism. In combination with modeling of cantilever deflection, the experiments help reveal the coupled electromechanical behavior of the device when making contact during switching operations, and suggest possible correlation between the switch degradation observed over cycles and the elastic deformation of nanocantilevers.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present demonstration and experimental results of four-terminal nanoscale electromechanical switches with a novel dual-gate design in a lateral configuration based on polycrystalline silicon carbide (poly-SiC) nanocantilevers. The switches operate at both room temperature and high temperature up to T 500oC in ambient air with enhanced control over the distributed electrostatic actuation force, and also enable recovery from stiction at contact. We have experimentally demonstrated multiple switching cycles of these nanomechanical switches with different actuation control schemes, and active release from stiction by exploiting a repulsive mechanism. In combination with modeling of cantilever deflection, the experiments help reveal the coupled electromechanical behavior of the device when making contact during switching operations, and suggest possible correlation between the switch degradation observed over cycles and the elastic deformation of nanocantilevers.