模式识别和知识发现从道路交通事故数据在埃塞俄比亚:对改善道路安全的影响

Tibebe Beshah, D. Ejigu, A. Abraham, V. Snás̃el, P. Kromer
{"title":"模式识别和知识发现从道路交通事故数据在埃塞俄比亚:对改善道路安全的影响","authors":"Tibebe Beshah, D. Ejigu, A. Abraham, V. Snás̃el, P. Kromer","doi":"10.1109/WICT.2011.6141426","DOIUrl":null,"url":null,"abstract":"This research tries to view accident data collection and analysis as a system that requires a special view towards understanding the whole and making sense out of it for improved decision making in the effort of reducing the problem of road safety. Under the umbrella of an information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore and predict the role of road users on possible injury risks. The research employed Classification and Adaptive Regression Trees (CART) and RandomForest approaches. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is exposed to many sided analyses. Empirical results showed that the models could classify accidents with promising accuracy.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Pattern recognition and knowledge discovery from road traffic accident data in Ethiopia: Implications for improving road safety\",\"authors\":\"Tibebe Beshah, D. Ejigu, A. Abraham, V. Snás̃el, P. Kromer\",\"doi\":\"10.1109/WICT.2011.6141426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research tries to view accident data collection and analysis as a system that requires a special view towards understanding the whole and making sense out of it for improved decision making in the effort of reducing the problem of road safety. Under the umbrella of an information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore and predict the role of road users on possible injury risks. The research employed Classification and Adaptive Regression Trees (CART) and RandomForest approaches. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is exposed to many sided analyses. Empirical results showed that the models could classify accidents with promising accuracy.\",\"PeriodicalId\":178645,\"journal\":{\"name\":\"2011 World Congress on Information and Communication Technologies\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2011.6141426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本研究试图将事故数据收集和分析视为一个系统,需要一个特殊的视角来理解整体,并从中获得意义,以改进决策,以减少道路安全问题。在发展中国家道路安全信息架构研究的框架下,这项机器学习实验研究的目标是探索和预测道路使用者在可能的伤害风险中的作用。研究采用了分类与自适应回归树(CART)和随机森林方法。为了确定相关模式并说明道路安全领域技术的性能,从亚的斯亚贝巴交通局收集的道路事故数据进行了多方面的分析。实证结果表明,该模型能较好地对事故进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pattern recognition and knowledge discovery from road traffic accident data in Ethiopia: Implications for improving road safety
This research tries to view accident data collection and analysis as a system that requires a special view towards understanding the whole and making sense out of it for improved decision making in the effort of reducing the problem of road safety. Under the umbrella of an information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore and predict the role of road users on possible injury risks. The research employed Classification and Adaptive Regression Trees (CART) and RandomForest approaches. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is exposed to many sided analyses. Empirical results showed that the models could classify accidents with promising accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud based model for senior citizens wellness management Application of genetic algorithm on quality graded networks for intelligent routing Role of ICT in the educational upliftment of women - Indian scenario Code clones in program test sequence identification An impact of ridgelet transform in handwritten recognition: A study on very large dataset of Kannada script
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1