运动-认知人机技能转移技术综述

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2021-05-30 DOI:10.1049/ccs2.12025
Yuan Guan, Ning Wang, Chenguang Yang
{"title":"运动-认知人机技能转移技术综述","authors":"Yuan Guan,&nbsp;Ning Wang,&nbsp;Chenguang Yang","doi":"10.1049/ccs2.12025","DOIUrl":null,"url":null,"abstract":"<p>A conventional robot programming method extensively limits the reusability of skills in the developmental aspect. Engineers programme a robot in a targeted manner for the realisation of predefined skills. The low reusability of general-purpose robot skills is mainly reflected in inability in novel and complex scenarios. Skill transfer aims to transfer human skills to general-purpose manipulators or mobile robots to replicate human-like behaviours. Skill transfer methods that are commonly used at present, such as learning from demonstrated (LfD) or imitation learning, endow the robot with the expert's low-level motor and high-level decision-making ability, so that skills can be reproduced and generalised according to perceived context. The improvement of robot cognition usually relates to an improvement in the autonomous high-level decision-making ability. Based on the idea of establishing a generic or specialised robot skill library, robots are expected to autonomously reason about the needs for using skills and plan compound movements according to sensory input. In recent years, in this area, many successful studies have demonstrated their effectiveness. Herein, a detailed review is provided on the transferring techniques of skills, applications, advancements, and limitations, especially in the LfD. Future research directions are also suggested.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12025","citationCount":"1","resultStr":"{\"title\":\"Review of the techniques used in motor-cognitive human-robot skill transfer\",\"authors\":\"Yuan Guan,&nbsp;Ning Wang,&nbsp;Chenguang Yang\",\"doi\":\"10.1049/ccs2.12025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A conventional robot programming method extensively limits the reusability of skills in the developmental aspect. Engineers programme a robot in a targeted manner for the realisation of predefined skills. The low reusability of general-purpose robot skills is mainly reflected in inability in novel and complex scenarios. Skill transfer aims to transfer human skills to general-purpose manipulators or mobile robots to replicate human-like behaviours. Skill transfer methods that are commonly used at present, such as learning from demonstrated (LfD) or imitation learning, endow the robot with the expert's low-level motor and high-level decision-making ability, so that skills can be reproduced and generalised according to perceived context. The improvement of robot cognition usually relates to an improvement in the autonomous high-level decision-making ability. Based on the idea of establishing a generic or specialised robot skill library, robots are expected to autonomously reason about the needs for using skills and plan compound movements according to sensory input. In recent years, in this area, many successful studies have demonstrated their effectiveness. Herein, a detailed review is provided on the transferring techniques of skills, applications, advancements, and limitations, especially in the LfD. Future research directions are also suggested.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12025\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

传统的机器人编程方法在开发方面严重限制了技能的可重用性。工程师以有针对性的方式对机器人进行编程,以实现预定义的技能。通用机器人技能的可重用性低,主要表现在不能适应新颖复杂的场景。技能转移旨在将人类技能转移到通用操纵器或移动机器人上,以复制类似人类的行为。目前常用的技能迁移方法,如从演示中学习(LfD)或模仿学习(imitation learning),赋予机器人专家的低水平运动能力和高水平决策能力,使技能能够根据感知情境进行复制和推广。机器人认知能力的提高往往涉及到自主高层决策能力的提高。基于建立一个通用或专门的机器人技能库的想法,机器人有望自主地推理使用技能的需求,并根据感官输入计划复合动作。近年来,在这一领域,许多成功的研究已经证明了它们的有效性。在此,详细回顾了技能转移技术,应用,进展和局限性,特别是在LfD中。并提出了今后的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of the techniques used in motor-cognitive human-robot skill transfer

A conventional robot programming method extensively limits the reusability of skills in the developmental aspect. Engineers programme a robot in a targeted manner for the realisation of predefined skills. The low reusability of general-purpose robot skills is mainly reflected in inability in novel and complex scenarios. Skill transfer aims to transfer human skills to general-purpose manipulators or mobile robots to replicate human-like behaviours. Skill transfer methods that are commonly used at present, such as learning from demonstrated (LfD) or imitation learning, endow the robot with the expert's low-level motor and high-level decision-making ability, so that skills can be reproduced and generalised according to perceived context. The improvement of robot cognition usually relates to an improvement in the autonomous high-level decision-making ability. Based on the idea of establishing a generic or specialised robot skill library, robots are expected to autonomously reason about the needs for using skills and plan compound movements according to sensory input. In recent years, in this area, many successful studies have demonstrated their effectiveness. Herein, a detailed review is provided on the transferring techniques of skills, applications, advancements, and limitations, especially in the LfD. Future research directions are also suggested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1