电动汽车电池充电器智能充电管理

V. Monteiro, J. G. Pinto, B. Exposto, J. Ferreira, J. Afonso
{"title":"电动汽车电池充电器智能充电管理","authors":"V. Monteiro, J. G. Pinto, B. Exposto, J. Ferreira, J. Afonso","doi":"10.1109/VPPC.2014.7007133","DOIUrl":null,"url":null,"abstract":"This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Smart Charging Management for Electric Vehicle Battery Chargers\",\"authors\":\"V. Monteiro, J. G. Pinto, B. Exposto, J. Ferreira, J. Afonso\",\"doi\":\"10.1109/VPPC.2014.7007133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.\",\"PeriodicalId\":133160,\"journal\":{\"name\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2014.7007133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对未来的智能家居,提出了一种面向电动汽车的智能电池充电策略。提出的策略是根据总电流调节电动汽车电池的充电电流,防止主开关断路器过流脱扣。在实时条件下,计算和实验结果验证了所提出的策略。为此,设计了一种双向电动汽车电池充电器原型机,并根据上述策略进行了操作。通过稳态和瞬态实验验证了该策略的有效性。结果表明,该充电器在重载条件下仍能正常工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Charging Management for Electric Vehicle Battery Chargers
This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Different Control Schemes of a Battery/Supercapacitor System in Electric Vehicle Hybrid Systems Energy Management Using Optimization Method Based on Dynamic Sources Models Magnetic Circuit Model: A Quick and Accurate Sizing Model for Electrical Machine Optimization in Hybrid Vehicles Game-Theoretic Approach for Complete Vehicle Energy Management A Modified Space Vector Modulation for Three-Phase Z-Source Integrated Charger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1