基于内容的图像检索,基于k均值和k近邻的多目标水果识别

Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita
{"title":"基于内容的图像检索,基于k均值和k近邻的多目标水果识别","authors":"Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita","doi":"10.1109/ICODSE.2017.8285855","DOIUrl":null,"url":null,"abstract":"The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor\",\"authors\":\"Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita\",\"doi\":\"10.1109/ICODSE.2017.8285855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

水果的独特性可以通过颜色和形状来观察。水果识别过程包括特征提取、聚类和识别三个阶段。每个阶段使用不同的方法。颜色提取过程采用模糊颜色直方图法(FCH),形状提取采用矩不变法(MI)。聚类过程使用K-Means聚类算法。识别过程使用k-NN方法。基于内容的图像检索(CBIR)过程使用图像特征(视觉内容)从数据库中执行图像搜索。实验结果和分析表明,该水果识别系统对单目标图像的识别准确率为92.5%,对多目标图像的识别准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor
The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1