利用反向归纳法从基于比率的时间测试序列重构时间符号轨迹

Junaid Iqbal, D. Truscan, J. Vain, Ivan Porres
{"title":"利用反向归纳法从基于比率的时间测试序列重构时间符号轨迹","authors":"Junaid Iqbal, D. Truscan, J. Vain, Ivan Porres","doi":"10.1145/3123779.3123813","DOIUrl":null,"url":null,"abstract":"As of today, model-based testing is considered as a leading-edge technology in the IT industry. In model-based testing, an implementation under test is tested for compliance with a model that describes the required behaviour of the implementation. Uppaal Tron is a popular tool for online model-based conformance testing of real-time systems; it uses the Uppaal verification engine to generate and convert on-the-fly timed symbolic traces into concrete test sequences. Among the advantages of online testing is the reduction of the symbolic state space needed for computing traces, better addressing non-determinism, as well as the possibility to execute longer-lasting test runs. However, analysing and debugging long test runs can be tedious and time-consuming especially when analysing root causes of failed tests. In game theory, backward-induction is a process to reason backwards in time, from the end of a problem or situation, in order to determine a sequence of optimal actions. In this paper, we propose an approach to reconstruct symbolic traces from test sequences generated by Uppaal Tron using backward-induction. The resulting symbolic traces can be imported in the Uppaal tool and visualised in the Uppaal simulator. The evaluation of the implementation of the approach shows that it has the potential to satisfy the needs of industrial level testing.","PeriodicalId":405980,"journal":{"name":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstructing timed symbolic traces from rtioco-based timed test sequences using backward-induction\",\"authors\":\"Junaid Iqbal, D. Truscan, J. Vain, Ivan Porres\",\"doi\":\"10.1145/3123779.3123813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As of today, model-based testing is considered as a leading-edge technology in the IT industry. In model-based testing, an implementation under test is tested for compliance with a model that describes the required behaviour of the implementation. Uppaal Tron is a popular tool for online model-based conformance testing of real-time systems; it uses the Uppaal verification engine to generate and convert on-the-fly timed symbolic traces into concrete test sequences. Among the advantages of online testing is the reduction of the symbolic state space needed for computing traces, better addressing non-determinism, as well as the possibility to execute longer-lasting test runs. However, analysing and debugging long test runs can be tedious and time-consuming especially when analysing root causes of failed tests. In game theory, backward-induction is a process to reason backwards in time, from the end of a problem or situation, in order to determine a sequence of optimal actions. In this paper, we propose an approach to reconstruct symbolic traces from test sequences generated by Uppaal Tron using backward-induction. The resulting symbolic traces can be imported in the Uppaal tool and visualised in the Uppaal simulator. The evaluation of the implementation of the approach shows that it has the potential to satisfy the needs of industrial level testing.\",\"PeriodicalId\":405980,\"journal\":{\"name\":\"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3123779.3123813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3123779.3123813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

到目前为止,基于模型的测试被认为是IT行业的前沿技术。在基于模型的测试中,测试中的实现是否符合描述实现所需行为的模型。Uppaal Tron是实时系统基于模型的一致性在线测试的流行工具;它使用Uppaal验证引擎生成并将实时的定时符号跟踪转换为具体的测试序列。在线测试的优点之一是减少了计算轨迹所需的符号状态空间,更好地处理非确定性,以及执行更持久的测试运行的可能性。然而,分析和调试长时间的测试运行可能是乏味和耗时的,特别是在分析失败测试的根本原因时。在博弈论中,逆向归纳是一个过程,从问题或情况的结束往回推理,以确定一系列最佳行动。本文提出了一种利用逆向归纳法从Uppaal Tron生成的测试序列中重构符号轨迹的方法。生成的符号跟踪可以在Uppaal工具中导入,并在Uppaal模拟器中可视化。实施后的评价表明,该方法具有满足工业水平检测需求的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing timed symbolic traces from rtioco-based timed test sequences using backward-induction
As of today, model-based testing is considered as a leading-edge technology in the IT industry. In model-based testing, an implementation under test is tested for compliance with a model that describes the required behaviour of the implementation. Uppaal Tron is a popular tool for online model-based conformance testing of real-time systems; it uses the Uppaal verification engine to generate and convert on-the-fly timed symbolic traces into concrete test sequences. Among the advantages of online testing is the reduction of the symbolic state space needed for computing traces, better addressing non-determinism, as well as the possibility to execute longer-lasting test runs. However, analysing and debugging long test runs can be tedious and time-consuming especially when analysing root causes of failed tests. In game theory, backward-induction is a process to reason backwards in time, from the end of a problem or situation, in order to determine a sequence of optimal actions. In this paper, we propose an approach to reconstruct symbolic traces from test sequences generated by Uppaal Tron using backward-induction. The resulting symbolic traces can be imported in the Uppaal tool and visualised in the Uppaal simulator. The evaluation of the implementation of the approach shows that it has the potential to satisfy the needs of industrial level testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal smart mobile access point placement for maximal coverage and minimal communication Dual channel security Information system evolution management: a complex evaluation Towards analysis of IP communication in a constrained environment of tactical radio networks Instructions energy consumption on a heterogeneous multicore platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1