传输线事实控制器位置的粒子群优化算法

S. Kiran, C. Subramani, Subhransu Sekhar Dash, M. Arunbhaskar, M. Jagadeeshkumar
{"title":"传输线事实控制器位置的粒子群优化算法","authors":"S. Kiran, C. Subramani, Subhransu Sekhar Dash, M. Arunbhaskar, M. Jagadeeshkumar","doi":"10.1109/PACC.2011.5978856","DOIUrl":null,"url":null,"abstract":"The main purpose of this project is to find the optimal location of FACTS controllers in a multi machine power system using particle swarm optimization (PSO). Using the proposed method, the location of FACTS controller, their type and rated values are optimized simultaneously. Among the various FACTS controllers, Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC) are considered. The proposed algorithm is an effective method for finding the optimal choice and location of FACTS controller and also minimizing the overall system cost, which comprises of generation cost and the investment cost of the FACTS controller using PSO and conventional Newton Raphson's power flow method. A MATLAB coding is developed for Enhanced Genetic Algorithm. In order to verify the effectiveness of the proposed method, IEEE 14- bus system is used.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Particle Swarm Optimization Algorithm to Find the Location of Facts Controllers for a Transmission Line\",\"authors\":\"S. Kiran, C. Subramani, Subhransu Sekhar Dash, M. Arunbhaskar, M. Jagadeeshkumar\",\"doi\":\"10.1109/PACC.2011.5978856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this project is to find the optimal location of FACTS controllers in a multi machine power system using particle swarm optimization (PSO). Using the proposed method, the location of FACTS controller, their type and rated values are optimized simultaneously. Among the various FACTS controllers, Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC) are considered. The proposed algorithm is an effective method for finding the optimal choice and location of FACTS controller and also minimizing the overall system cost, which comprises of generation cost and the investment cost of the FACTS controller using PSO and conventional Newton Raphson's power flow method. A MATLAB coding is developed for Enhanced Genetic Algorithm. In order to verify the effectiveness of the proposed method, IEEE 14- bus system is used.\",\"PeriodicalId\":403612,\"journal\":{\"name\":\"2011 International Conference on Process Automation, Control and Computing\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Process Automation, Control and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACC.2011.5978856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5978856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本课题的主要目的是利用粒子群算法(PSO)寻找多机电力系统中FACTS控制器的最优位置。利用该方法,同时优化了FACTS控制器的位置、类型和额定值。在各种FACTS控制器中,考虑了晶闸管控制串联补偿器(TCSC)和统一功率流控制器(UPFC)。该算法是一种有效的方法,既能找到FACTS控制器的最优选择和位置,又能最大限度地降低系统总体成本,其中包括发电成本和使用粒子群算法和传统Newton Raphson潮流法的FACTS控制器的投资成本。开发了增强型遗传算法的MATLAB编码。为了验证该方法的有效性,采用了IEEE 14总线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Swarm Optimization Algorithm to Find the Location of Facts Controllers for a Transmission Line
The main purpose of this project is to find the optimal location of FACTS controllers in a multi machine power system using particle swarm optimization (PSO). Using the proposed method, the location of FACTS controller, their type and rated values are optimized simultaneously. Among the various FACTS controllers, Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC) are considered. The proposed algorithm is an effective method for finding the optimal choice and location of FACTS controller and also minimizing the overall system cost, which comprises of generation cost and the investment cost of the FACTS controller using PSO and conventional Newton Raphson's power flow method. A MATLAB coding is developed for Enhanced Genetic Algorithm. In order to verify the effectiveness of the proposed method, IEEE 14- bus system is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Network Soft Sensor Application in Cement Industry: Prediction of Clinker Quality Parameters Grid Based Security Framework for Online Trading An Advanced FACTS Controller for Power Flow Management in Transmission System Using IPFC Distributed Fault Diagnosis in Wireless Sensor Networks Automatic Control of Ash Extraction for a Wood Gasifier Using Fuzzy Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1