{"title":"运动轨迹","authors":"M. Shah, K. Rangarajan, P. Tsai","doi":"10.1109/21.247894","DOIUrl":null,"url":null,"abstract":"A simple algorithm for selecting and linking interesting flow vectors across a sequence of frames for computing motion trajectories is presented. Tokens that have both interesting pixel gray values in the spatial domain and in the optical flow field in the temporal domain are tracked. This AND operation effectively removes some redundant trajectories. Due to errors introduced during the computation of optical flow, and the linking of such flow vectors across a sequence of frames, the resultant trajectories are not always smooth. A Kalman-filtering-based approach for smoothing the trajectories is discussed.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Motion trajectories\",\"authors\":\"M. Shah, K. Rangarajan, P. Tsai\",\"doi\":\"10.1109/21.247894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple algorithm for selecting and linking interesting flow vectors across a sequence of frames for computing motion trajectories is presented. Tokens that have both interesting pixel gray values in the spatial domain and in the optical flow field in the temporal domain are tracked. This AND operation effectively removes some redundant trajectories. Due to errors introduced during the computation of optical flow, and the linking of such flow vectors across a sequence of frames, the resultant trajectories are not always smooth. A Kalman-filtering-based approach for smoothing the trajectories is discussed.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/21.247894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/21.247894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种简单的算法,用于在一系列帧中选择和连接感兴趣的流向量以计算运动轨迹。在空间域中和光流场中同时具有有趣像素灰度值的标记被跟踪。这种与运算有效地去除了一些冗余轨迹。由于光流计算过程中引入的误差,以及这些流矢量在一系列帧上的链接,所得到的轨迹并不总是光滑的。讨论了一种基于卡尔曼滤波的轨迹平滑方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion trajectories
A simple algorithm for selecting and linking interesting flow vectors across a sequence of frames for computing motion trajectories is presented. Tokens that have both interesting pixel gray values in the spatial domain and in the optical flow field in the temporal domain are tracked. This AND operation effectively removes some redundant trajectories. Due to errors introduced during the computation of optical flow, and the linking of such flow vectors across a sequence of frames, the resultant trajectories are not always smooth. A Kalman-filtering-based approach for smoothing the trajectories is discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1