{"title":"汇率市场的技术偏见","authors":"Svitlana Galeshchuk","doi":"10.1002/isaf.1408","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prediction of exchange rates has been a topic for debate in economic literature since the late 1980s. The recent development of machine learning techniques has spurred a plethora of studies that further improves the prediction models for currency markets. This high-tech progress may create challenges for market efficiency along with information asymmetry and irrationality of decision-making. This technological bias emerges from the fact that recent innovative approaches have been used to solve trading tasks and to find the best trading strategies. This paper demonstrates that traders can leverage technological bias for financial market forecasting. Those traders who adapt faster to the changes in market innovations will get excess returns. To support this hypothesis we compare the performance of deep learning methods, shallow neural networks with baseline prediction methods and a random walk model using daily closing rate between three currency pairs: Euro and US Dollar (EUR/USD), British Pound and US Dollar (GBP/USD), and US Dollar and Japanese Yen (USD/JPY). The results demonstrate that deep learning achieves higher accuracy than alternate methods. The shallow neural network outperforms the random walk model, but cannot surpass ARIMA accuracy significantly. The paper discusses possible outcomes of the technological shift for financial market development and accounting conforming also to adaptive market hypothesis.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"24 2-3","pages":"80-86"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1408","citationCount":"9","resultStr":"{\"title\":\"Technological bias at the exchange rate market\",\"authors\":\"Svitlana Galeshchuk\",\"doi\":\"10.1002/isaf.1408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Prediction of exchange rates has been a topic for debate in economic literature since the late 1980s. The recent development of machine learning techniques has spurred a plethora of studies that further improves the prediction models for currency markets. This high-tech progress may create challenges for market efficiency along with information asymmetry and irrationality of decision-making. This technological bias emerges from the fact that recent innovative approaches have been used to solve trading tasks and to find the best trading strategies. This paper demonstrates that traders can leverage technological bias for financial market forecasting. Those traders who adapt faster to the changes in market innovations will get excess returns. To support this hypothesis we compare the performance of deep learning methods, shallow neural networks with baseline prediction methods and a random walk model using daily closing rate between three currency pairs: Euro and US Dollar (EUR/USD), British Pound and US Dollar (GBP/USD), and US Dollar and Japanese Yen (USD/JPY). The results demonstrate that deep learning achieves higher accuracy than alternate methods. The shallow neural network outperforms the random walk model, but cannot surpass ARIMA accuracy significantly. The paper discusses possible outcomes of the technological shift for financial market development and accounting conforming also to adaptive market hypothesis.</p>\\n </div>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"24 2-3\",\"pages\":\"80-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1408\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Prediction of exchange rates has been a topic for debate in economic literature since the late 1980s. The recent development of machine learning techniques has spurred a plethora of studies that further improves the prediction models for currency markets. This high-tech progress may create challenges for market efficiency along with information asymmetry and irrationality of decision-making. This technological bias emerges from the fact that recent innovative approaches have been used to solve trading tasks and to find the best trading strategies. This paper demonstrates that traders can leverage technological bias for financial market forecasting. Those traders who adapt faster to the changes in market innovations will get excess returns. To support this hypothesis we compare the performance of deep learning methods, shallow neural networks with baseline prediction methods and a random walk model using daily closing rate between three currency pairs: Euro and US Dollar (EUR/USD), British Pound and US Dollar (GBP/USD), and US Dollar and Japanese Yen (USD/JPY). The results demonstrate that deep learning achieves higher accuracy than alternate methods. The shallow neural network outperforms the random walk model, but cannot surpass ARIMA accuracy significantly. The paper discusses possible outcomes of the technological shift for financial market development and accounting conforming also to adaptive market hypothesis.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.