{"title":"基于手接触的人形机器人跌落的实时稳定:一种最优控制方法","authors":"Shihao Wang, Kris K. Hauser","doi":"10.1109/HUMANOIDS.2017.8246912","DOIUrl":null,"url":null,"abstract":"This paper introduces a real-time strategy to stabilize a falling humanoid robot by making hand contact with rails or walls in the environment. It uses an optimal control strategy with a simplified three-link model and finds an optimal hand contact using a direct shooting method. The objective function is designed to maintain stability while minimizing the probability of the contact slipping and minimizing impact that may damage the robot's arm. To achieve real-time performance, the method uses a precomputed database of necessary sticking friction coefficients at the contact points for all possible postimpact states. Validation is performed on a number of simulated falls in several rails and walls.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-time stabilization of a falling humanoid robot using hand contact: An optimal control approach\",\"authors\":\"Shihao Wang, Kris K. Hauser\",\"doi\":\"10.1109/HUMANOIDS.2017.8246912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a real-time strategy to stabilize a falling humanoid robot by making hand contact with rails or walls in the environment. It uses an optimal control strategy with a simplified three-link model and finds an optimal hand contact using a direct shooting method. The objective function is designed to maintain stability while minimizing the probability of the contact slipping and minimizing impact that may damage the robot's arm. To achieve real-time performance, the method uses a precomputed database of necessary sticking friction coefficients at the contact points for all possible postimpact states. Validation is performed on a number of simulated falls in several rails and walls.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time stabilization of a falling humanoid robot using hand contact: An optimal control approach
This paper introduces a real-time strategy to stabilize a falling humanoid robot by making hand contact with rails or walls in the environment. It uses an optimal control strategy with a simplified three-link model and finds an optimal hand contact using a direct shooting method. The objective function is designed to maintain stability while minimizing the probability of the contact slipping and minimizing impact that may damage the robot's arm. To achieve real-time performance, the method uses a precomputed database of necessary sticking friction coefficients at the contact points for all possible postimpact states. Validation is performed on a number of simulated falls in several rails and walls.