利用凝聚算法实现移动机器人的跟踪

E. Meier, F. Ade
{"title":"利用凝聚算法实现移动机器人的跟踪","authors":"E. Meier, F. Ade","doi":"10.1109/EURBOT.1999.827624","DOIUrl":null,"url":null,"abstract":"The detection of objects in every frame of a sequence is often not sufficient for scene interpretation. Tracking can increase the robustness, especially when occlusions occur or when objects temporally disappear. The standard approach for tracking is to use a Kalman filter for every object. This, however requires the use of a high complexity management system to deal with the multiple hypotheses necessary to track all anticipated objects. We present a stochastic approach which is based on the CONDENSATION algorithm-conditional density propagation over time-that is capable of tracking multiple objects with multiple hypotheses in range images. A probability density function describing the likely state of the objects is propagated over time using a dynamic model. The measurements influence the probability function and allow the incorporation of new objects into the tracking scheme. Additionally, the representation of the density function with a fixed number of samples ensures a constant running time per iteration step. Results on different data sources are shown for mobile robot applications.","PeriodicalId":364500,"journal":{"name":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Using the condensation algorithm to implement tracking for mobile robots\",\"authors\":\"E. Meier, F. Ade\",\"doi\":\"10.1109/EURBOT.1999.827624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of objects in every frame of a sequence is often not sufficient for scene interpretation. Tracking can increase the robustness, especially when occlusions occur or when objects temporally disappear. The standard approach for tracking is to use a Kalman filter for every object. This, however requires the use of a high complexity management system to deal with the multiple hypotheses necessary to track all anticipated objects. We present a stochastic approach which is based on the CONDENSATION algorithm-conditional density propagation over time-that is capable of tracking multiple objects with multiple hypotheses in range images. A probability density function describing the likely state of the objects is propagated over time using a dynamic model. The measurements influence the probability function and allow the incorporation of new objects into the tracking scheme. Additionally, the representation of the density function with a fixed number of samples ensures a constant running time per iteration step. Results on different data sources are shown for mobile robot applications.\",\"PeriodicalId\":364500,\"journal\":{\"name\":\"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURBOT.1999.827624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1999.827624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

在序列的每一帧中检测到的物体通常不足以解释场景。跟踪可以增加鲁棒性,特别是当遮挡发生或物体暂时消失时。跟踪的标准方法是对每个对象使用卡尔曼滤波器。然而,这需要使用高度复杂的管理系统来处理跟踪所有预期对象所需的多个假设。我们提出了一种基于冷凝算法(条件密度随时间传播)的随机方法,该方法能够在距离图像中跟踪具有多个假设的多个目标。描述对象可能状态的概率密度函数使用动态模型随时间传播。测量影响概率函数,并允许将新对象纳入跟踪方案。此外,用固定数量的样本表示密度函数确保每个迭代步骤的运行时间不变。给出了移动机器人应用在不同数据源上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the condensation algorithm to implement tracking for mobile robots
The detection of objects in every frame of a sequence is often not sufficient for scene interpretation. Tracking can increase the robustness, especially when occlusions occur or when objects temporally disappear. The standard approach for tracking is to use a Kalman filter for every object. This, however requires the use of a high complexity management system to deal with the multiple hypotheses necessary to track all anticipated objects. We present a stochastic approach which is based on the CONDENSATION algorithm-conditional density propagation over time-that is capable of tracking multiple objects with multiple hypotheses in range images. A probability density function describing the likely state of the objects is propagated over time using a dynamic model. The measurements influence the probability function and allow the incorporation of new objects into the tracking scheme. Additionally, the representation of the density function with a fixed number of samples ensures a constant running time per iteration step. Results on different data sources are shown for mobile robot applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical decision-theoretic planning for autonomous robotic surveillance Environment modelling in a multi-agent mobile system Learning to acquire and select useful landmarks for route following Motion control of a snakelike robot Development of a visual object localization module for mobile robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1