基于模型的番茄植物病害手机图像统计特征分类

C. Hlaing, Sai Maung Maung Zaw
{"title":"基于模型的番茄植物病害手机图像统计特征分类","authors":"C. Hlaing, Sai Maung Maung Zaw","doi":"10.1109/PDCAT.2017.00044","DOIUrl":null,"url":null,"abstract":"We introduce a set of statistical features and propose the SIFT texture features descriptor model on statistical image processing. The proposed feature is applied to plant disease classification with PlantVillage image dataset. The input is plant leaf image taken by phone camera whereas the output is the plant disease name. The input image is preprocessed to remove background. The SIFT features are extracted from the preprocessed image. As a main contribution, the extracted SIFT features are model by Generalized Extreme Value (GEV) Distribution to represent an image information in a small number of dimensions. We focus on the statistical feature and model-based texture features to minimize the computational time and complexity of phone image processing. The propose features aim to be significantly reduced in computational time for plant disease recognition for mobile phone. The experimental result shows that the proposed features can compare with other previous statistical features and can also distinguish between six tomato diseases, including Leaf Mold, Septoria Leaf Spot, Two Spotted Spider Mite, Late Blight, Bacterial Spot and Target Spot.","PeriodicalId":119197,"journal":{"name":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Model-Based Statistical Features for Mobile Phone Image of Tomato Plant Disease Classification\",\"authors\":\"C. Hlaing, Sai Maung Maung Zaw\",\"doi\":\"10.1109/PDCAT.2017.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a set of statistical features and propose the SIFT texture features descriptor model on statistical image processing. The proposed feature is applied to plant disease classification with PlantVillage image dataset. The input is plant leaf image taken by phone camera whereas the output is the plant disease name. The input image is preprocessed to remove background. The SIFT features are extracted from the preprocessed image. As a main contribution, the extracted SIFT features are model by Generalized Extreme Value (GEV) Distribution to represent an image information in a small number of dimensions. We focus on the statistical feature and model-based texture features to minimize the computational time and complexity of phone image processing. The propose features aim to be significantly reduced in computational time for plant disease recognition for mobile phone. The experimental result shows that the proposed features can compare with other previous statistical features and can also distinguish between six tomato diseases, including Leaf Mold, Septoria Leaf Spot, Two Spotted Spider Mite, Late Blight, Bacterial Spot and Target Spot.\",\"PeriodicalId\":119197,\"journal\":{\"name\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2017.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2017.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在统计图像处理中引入一组统计特征,并提出SIFT纹理特征描述子模型。利用PlantVillage图像数据集将该特征应用于植物病害分类。输入是手机摄像头拍摄的植物叶片图像,输出是植物病害名称。对输入图像进行预处理以去除背景。从预处理图像中提取SIFT特征。作为主要贡献,提取的SIFT特征采用广义极值(GEV)分布模型来表示少量维度的图像信息。我们专注于统计特征和基于模型的纹理特征,以最大限度地减少手机图像处理的计算时间和复杂性。所提出的特征旨在显著减少手机植物病害识别的计算时间。实验结果表明,所提出的特征可以与其他统计特征进行比较,并且可以区分叶霉病、Septoria叶斑病、双斑蜘蛛螨、晚疫病、细菌性斑病和目标斑病等6种番茄病害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Based Statistical Features for Mobile Phone Image of Tomato Plant Disease Classification
We introduce a set of statistical features and propose the SIFT texture features descriptor model on statistical image processing. The proposed feature is applied to plant disease classification with PlantVillage image dataset. The input is plant leaf image taken by phone camera whereas the output is the plant disease name. The input image is preprocessed to remove background. The SIFT features are extracted from the preprocessed image. As a main contribution, the extracted SIFT features are model by Generalized Extreme Value (GEV) Distribution to represent an image information in a small number of dimensions. We focus on the statistical feature and model-based texture features to minimize the computational time and complexity of phone image processing. The propose features aim to be significantly reduced in computational time for plant disease recognition for mobile phone. The experimental result shows that the proposed features can compare with other previous statistical features and can also distinguish between six tomato diseases, including Leaf Mold, Septoria Leaf Spot, Two Spotted Spider Mite, Late Blight, Bacterial Spot and Target Spot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing Algorithmic Skeletons with Bulk Synchronous Parallel ML Managing Bytecode and ISA Compatibility with an Enhanced Toolchain Improved Online Algorithms for One-Dimensional BinPacking with Advice A Case Study in Higher Education Domain Based on a Prototype for Business Process Models Improvement: BPMoQualAssess NMFDIV: A Nonnegative Matrix Factorization Approach for Search Result Diversification on Attributed Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1