使用轮廓和强度引导插值促进3D数据集的手动分割

S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich
{"title":"使用轮廓和强度引导插值促进3D数据集的手动分割","authors":"S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich","doi":"10.1109/ISBI.2019.8759500","DOIUrl":null,"url":null,"abstract":"Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facilitating Manual Segmentation of 3D Datasets Using Contour And Intensity Guided Interpolation\",\"authors\":\"S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich\",\"doi\":\"10.1109/ISBI.2019.8759500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人工分割三维成像数据集中的解剖结构是一个非常耗时的过程。这个过程可以使用片间插值技术加速,这只需要一小部分片进行手动分割。在本文中,我们提出了一种两步插值方法,该方法利用“二元加权平均”算法来插值轮廓信息,并利用随机森林框架来执行基于强度的标签分类。我们提出了在离体MRI扫描海马分割的背景下进行的实验结果。与随机步行者算法和基于形态的插值算法相比,该方法的分割更加精确,三维重建更加平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facilitating Manual Segmentation of 3D Datasets Using Contour And Intensity Guided Interpolation
Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1