病理性心音信号的EMD分割及时频分析

D. Boutana, M. Benidir, B. Barkat
{"title":"病理性心音信号的EMD分割及时频分析","authors":"D. Boutana, M. Benidir, B. Barkat","doi":"10.5281/ZENODO.43833","DOIUrl":null,"url":null,"abstract":"The Phonocardiogram (PCG) is the graphical representation of acoustic energy due to the mechanical cardiac activity. Sometimes cardiac diseases provide pathological murmurs mixed with the main components of the Heart Sound Signal (HSs). The Empirical Mode Decomposition (EMD) allows decomposing a multicomponent signal into a set of monocomponent signals, called Intrinsic Mode Functions (IMFs). Each IMF represents an oscillatory mode with one instantaneous frequency. The goal of this paper is to segment some pathological HSs by selecting the most appropriate IMFs using the correlation coefficient. Then we extract some time-frequency characteristics considered as useful parameters to distinguish different cases of heart diseases. The experimental results conducted on some real-life pathological HSs such as: Mitral Regurgitation (MR), Aortic Regurgitation (AR) and the Opening Snap (OS) case; revealed the performance of the proposed method.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Segmentation and time-frequency analysis of pathological Heart Sound Signals using the EMD method\",\"authors\":\"D. Boutana, M. Benidir, B. Barkat\",\"doi\":\"10.5281/ZENODO.43833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Phonocardiogram (PCG) is the graphical representation of acoustic energy due to the mechanical cardiac activity. Sometimes cardiac diseases provide pathological murmurs mixed with the main components of the Heart Sound Signal (HSs). The Empirical Mode Decomposition (EMD) allows decomposing a multicomponent signal into a set of monocomponent signals, called Intrinsic Mode Functions (IMFs). Each IMF represents an oscillatory mode with one instantaneous frequency. The goal of this paper is to segment some pathological HSs by selecting the most appropriate IMFs using the correlation coefficient. Then we extract some time-frequency characteristics considered as useful parameters to distinguish different cases of heart diseases. The experimental results conducted on some real-life pathological HSs such as: Mitral Regurgitation (MR), Aortic Regurgitation (AR) and the Opening Snap (OS) case; revealed the performance of the proposed method.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

心音图(PCG)是由心脏机械活动引起的声能的图示。有时心脏疾病提供病理性杂音与心音信号(HSs)的主要成分混合。经验模态分解(EMD)允许将多分量信号分解为一组单分量信号,称为内禀模态函数(IMFs)。每个IMF代表一个具有瞬时频率的振荡模式。本文的目标是通过使用相关系数选择最合适的imf来分割一些病理性hs。然后我们提取一些时频特征作为有用的参数来区分不同的心脏病病例。对现实生活中的一些病理性HSs,如:二尖瓣反流(MR)、主动脉反流(AR)和瓣裂(OS)病例的实验结果;揭示了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation and time-frequency analysis of pathological Heart Sound Signals using the EMD method
The Phonocardiogram (PCG) is the graphical representation of acoustic energy due to the mechanical cardiac activity. Sometimes cardiac diseases provide pathological murmurs mixed with the main components of the Heart Sound Signal (HSs). The Empirical Mode Decomposition (EMD) allows decomposing a multicomponent signal into a set of monocomponent signals, called Intrinsic Mode Functions (IMFs). Each IMF represents an oscillatory mode with one instantaneous frequency. The goal of this paper is to segment some pathological HSs by selecting the most appropriate IMFs using the correlation coefficient. Then we extract some time-frequency characteristics considered as useful parameters to distinguish different cases of heart diseases. The experimental results conducted on some real-life pathological HSs such as: Mitral Regurgitation (MR), Aortic Regurgitation (AR) and the Opening Snap (OS) case; revealed the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1