{"title":"差分私有稀疏逆协方差估计","authors":"Di Wang, Mengdi Huai, Jinhui Xu","doi":"10.1109/GlobalSIP.2018.8646444","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"DIFFERENTIALLY PRIVATE SPARSE INVERSE COVARIANCE ESTIMATION\",\"authors\":\"Di Wang, Mengdi Huai, Jinhui Xu\",\"doi\":\"10.1109/GlobalSIP.2018.8646444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present the first results on the sparse inverse covariance estimation problem under the differential privacy model. We first gave an ε-differentially private algorithm using output perturbation strategy, which is based on the sensitivity of the optimization problem and the Wishart mechanism. To further improve this result, we then introduce a general covariance perturbation method to achieve both ε-differential privacy and (ε, δ)-differential privacy. For ε-differential privacy, we analyze the performance of Laplacian and Wishart mechanisms, and for (ε, δ)-differential privacy, we examine the performance of Gaussian and Wishart mechanisms. Experiments on both synthetic and benchmark datasets confirm our theoretical analysis.