基于hmm的说话人验证性能改进的实地研究

T. Jacobs, A. Setlur
{"title":"基于hmm的说话人验证性能改进的实地研究","authors":"T. Jacobs, A. Setlur","doi":"10.1109/IVTTA.1994.341530","DOIUrl":null,"url":null,"abstract":"This study reports our findings on speaker verification (SV) performance improvements using random 4-digit utterances collected over a single microphone type. The databases used in this study are the result of an ongoing field trial of SV access to automatic teller machines (ATMs) for secure unattended banking services. The SV system uses continuous density HMM models trained on 18 connected 4-digit utterances and has a baseline equal-error-rate (EER) of between 5.5 and 11% for different sets of data. Because of the limited training data, estimates for the mixture variances are most often poor. By calculating average mixture variances using all of the training data for a given speaker and then setting all of the model variances for that speaker to these speaker dependent values and using cohort normalization, the EER decreases consistently to between 2.5 and 6.5%.<<ETX>>","PeriodicalId":435907,"journal":{"name":"Proceedings of 2nd IEEE Workshop on Interactive Voice Technology for Telecommunications Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A field study of performance improvements in HMM-based speaker verification\",\"authors\":\"T. Jacobs, A. Setlur\",\"doi\":\"10.1109/IVTTA.1994.341530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports our findings on speaker verification (SV) performance improvements using random 4-digit utterances collected over a single microphone type. The databases used in this study are the result of an ongoing field trial of SV access to automatic teller machines (ATMs) for secure unattended banking services. The SV system uses continuous density HMM models trained on 18 connected 4-digit utterances and has a baseline equal-error-rate (EER) of between 5.5 and 11% for different sets of data. Because of the limited training data, estimates for the mixture variances are most often poor. By calculating average mixture variances using all of the training data for a given speaker and then setting all of the model variances for that speaker to these speaker dependent values and using cohort normalization, the EER decreases consistently to between 2.5 and 6.5%.<<ETX>>\",\"PeriodicalId\":435907,\"journal\":{\"name\":\"Proceedings of 2nd IEEE Workshop on Interactive Voice Technology for Telecommunications Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2nd IEEE Workshop on Interactive Voice Technology for Telecommunications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVTTA.1994.341530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2nd IEEE Workshop on Interactive Voice Technology for Telecommunications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVTTA.1994.341530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究报告了我们使用在单一麦克风类型上收集的随机4位数话语来改进说话人验证(SV)性能的发现。本研究中使用的数据库是SV进入自动柜员机(atm)进行安全无人值守银行服务的现场试验的结果。SV系统使用连续密度HMM模型,对18个相连的4位数话语进行训练,对于不同的数据集,其基线等错误率(EER)在5.5%到11%之间。由于训练数据有限,对混合方差的估计通常很差。通过使用给定说话者的所有训练数据计算平均混合方差,然后将该说话者的所有模型方差设置为这些与说话者相关的值,并使用队列归一化,EER始终下降到2.5至6.5%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A field study of performance improvements in HMM-based speaker verification
This study reports our findings on speaker verification (SV) performance improvements using random 4-digit utterances collected over a single microphone type. The databases used in this study are the result of an ongoing field trial of SV access to automatic teller machines (ATMs) for secure unattended banking services. The SV system uses continuous density HMM models trained on 18 connected 4-digit utterances and has a baseline equal-error-rate (EER) of between 5.5 and 11% for different sets of data. Because of the limited training data, estimates for the mixture variances are most often poor. By calculating average mixture variances using all of the training data for a given speaker and then setting all of the model variances for that speaker to these speaker dependent values and using cohort normalization, the EER decreases consistently to between 2.5 and 6.5%.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field trial of a speaker verification service for caller identity verification in the telephone network VoiceDialing-the first speech recognition based telephone service delivered to customer's home A system for field performance assessment of a speech recognition based telephone service Automated call routing in a telecommunications network Automation of operator services: a successful application of speech recognition technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1