体素选择和ROI在fMRI数据分析中的作用

R. Zafar, A. Malik, N. Kamel, S. Dass
{"title":"体素选择和ROI在fMRI数据分析中的作用","authors":"R. Zafar, A. Malik, N. Kamel, S. Dass","doi":"10.1109/MeMeA.2016.7533739","DOIUrl":null,"url":null,"abstract":"Functional magnetic resonance imaging (fMRI) is one of the most popular and reliable modality to measure brain activities. The quality of fMRI data is best among other modalities such as Electroencephalography (EEG) and Magnetoencephalography (MEG). In fMRI, normally number of features are more than the number of instances so it is necessary to select the features and do dimension reduction to remove noisy and redundant data. Many techniques and methods are used to select the significant features (voxels). In this paper, the significant voxels are selected within the anatomical region of interest (ROI) based on the absolute values. In this study, we have predicted the brain states using two machine learning algorithm, i.e, Radial basis function (RBF) network and Naïve Bayes. A visual experiment with two categories is done. In conclusion, it is shown that less number of voxels and specific brain regions can increase the accuracy of prediction.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Role of voxel selection and ROI in fMRI data analysis\",\"authors\":\"R. Zafar, A. Malik, N. Kamel, S. Dass\",\"doi\":\"10.1109/MeMeA.2016.7533739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional magnetic resonance imaging (fMRI) is one of the most popular and reliable modality to measure brain activities. The quality of fMRI data is best among other modalities such as Electroencephalography (EEG) and Magnetoencephalography (MEG). In fMRI, normally number of features are more than the number of instances so it is necessary to select the features and do dimension reduction to remove noisy and redundant data. Many techniques and methods are used to select the significant features (voxels). In this paper, the significant voxels are selected within the anatomical region of interest (ROI) based on the absolute values. In this study, we have predicted the brain states using two machine learning algorithm, i.e, Radial basis function (RBF) network and Naïve Bayes. A visual experiment with two categories is done. In conclusion, it is shown that less number of voxels and specific brain regions can increase the accuracy of prediction.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

功能磁共振成像(fMRI)是测量大脑活动最流行和最可靠的方法之一。在脑电图(EEG)和脑磁图(MEG)等其他方式中,功能磁共振成像数据的质量是最好的。在fMRI中,特征数通常大于实例数,因此需要对特征进行选择并进行降维以去除噪声和冗余数据。许多技术和方法被用来选择重要的特征(体素)。本文在解剖感兴趣区域(ROI)内选取基于绝对值的重要体素。在这项研究中,我们使用了两种机器学习算法,即径向基函数(RBF)网络和Naïve贝叶斯来预测大脑状态。进行了两个类别的视觉实验。综上所述,较少的体素和特定的脑区可以提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of voxel selection and ROI in fMRI data analysis
Functional magnetic resonance imaging (fMRI) is one of the most popular and reliable modality to measure brain activities. The quality of fMRI data is best among other modalities such as Electroencephalography (EEG) and Magnetoencephalography (MEG). In fMRI, normally number of features are more than the number of instances so it is necessary to select the features and do dimension reduction to remove noisy and redundant data. Many techniques and methods are used to select the significant features (voxels). In this paper, the significant voxels are selected within the anatomical region of interest (ROI) based on the absolute values. In this study, we have predicted the brain states using two machine learning algorithm, i.e, Radial basis function (RBF) network and Naïve Bayes. A visual experiment with two categories is done. In conclusion, it is shown that less number of voxels and specific brain regions can increase the accuracy of prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of temperature rise in tissue — Mimicking material induced by a HIFU transducer Influence of fiber Bragg grating length on temperature measurements in laser-irradiated organs Optimal peripheral measurement point for the assessment of preterm patients in intensive care units Classification of cognitive and resting states of the brain using EEG features Scoring systems in dermatology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1