探索共享内存平台上并行三角形计数算法的优化

A. Tom, N. Sundaram, Nesreen Ahmed, Shaden Smith, Stijn Eyerman, Midhunchandra Kodiyath, I. Hur, F. Petrini, G. Karypis
{"title":"探索共享内存平台上并行三角形计数算法的优化","authors":"A. Tom, N. Sundaram, Nesreen Ahmed, Shaden Smith, Stijn Eyerman, Midhunchandra Kodiyath, I. Hur, F. Petrini, G. Karypis","doi":"10.1109/HPEC.2017.8091054","DOIUrl":null,"url":null,"abstract":"The widespread use of graphs to model large scale real-world data brings with it the need for fast graph analytics. In this paper, we explore the problem of triangle counting, a fundamental graph-analytic operation, on shared-memory platforms. Existing triangle counting implementations do not effectively utilize the key characteristics of large sparse graphs for tuning their algorithms for performance. We explore such optimizations and develop faster serial and parallel variants of existing algorithms, which outperform the state-of-the-art on Intel manycore and multicore processors. Our algorithms achieve good strong scaling on many graphs with varying scale and degree distributions. Furthermore, we extend our optimizations to a well-known graph processing framework, GraphMat, and demonstrate their generality.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Exploring optimizations on shared-memory platforms for parallel triangle counting algorithms\",\"authors\":\"A. Tom, N. Sundaram, Nesreen Ahmed, Shaden Smith, Stijn Eyerman, Midhunchandra Kodiyath, I. Hur, F. Petrini, G. Karypis\",\"doi\":\"10.1109/HPEC.2017.8091054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of graphs to model large scale real-world data brings with it the need for fast graph analytics. In this paper, we explore the problem of triangle counting, a fundamental graph-analytic operation, on shared-memory platforms. Existing triangle counting implementations do not effectively utilize the key characteristics of large sparse graphs for tuning their algorithms for performance. We explore such optimizations and develop faster serial and parallel variants of existing algorithms, which outperform the state-of-the-art on Intel manycore and multicore processors. Our algorithms achieve good strong scaling on many graphs with varying scale and degree distributions. Furthermore, we extend our optimizations to a well-known graph processing framework, GraphMat, and demonstrate their generality.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

广泛使用图形来模拟大规模的现实世界数据,带来了对快速图形分析的需求。本文探讨了共享内存平台上的三角形计数问题,这是一种基本的图分析操作。现有的三角形计数实现并没有有效地利用大型稀疏图的关键特征来调优其算法以提高性能。我们探索这种优化,并开发现有算法的更快的串行和并行变体,其性能优于英特尔多核和多核处理器上的最新技术。我们的算法在许多具有不同尺度和度分布的图上实现了良好的强缩放。此外,我们将我们的优化扩展到一个众所周知的图形处理框架GraphMat,并展示了它们的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring optimizations on shared-memory platforms for parallel triangle counting algorithms
The widespread use of graphs to model large scale real-world data brings with it the need for fast graph analytics. In this paper, we explore the problem of triangle counting, a fundamental graph-analytic operation, on shared-memory platforms. Existing triangle counting implementations do not effectively utilize the key characteristics of large sparse graphs for tuning their algorithms for performance. We explore such optimizations and develop faster serial and parallel variants of existing algorithms, which outperform the state-of-the-art on Intel manycore and multicore processors. Our algorithms achieve good strong scaling on many graphs with varying scale and degree distributions. Furthermore, we extend our optimizations to a well-known graph processing framework, GraphMat, and demonstrate their generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1