模拟LED生长室内大豆冠层内的光谱

T. Hitz, M. Henke, S. Graeff‐Hönninger, Sebastian Munz
{"title":"模拟LED生长室内大豆冠层内的光谱","authors":"T. Hitz, M. Henke, S. Graeff‐Hönninger, Sebastian Munz","doi":"10.1109/PMA.2018.8611598","DOIUrl":null,"url":null,"abstract":"Knowledge on the effect of light spectra on different crops is important in the exploration of possibilities to regulate crop growth and quality with LED lighting. Functional structural plant modelling can be an important tool to cope with the large number of experimental treatments necessary to identify the effect of specific wavelengths and the interaction with other environmental factors. Therefore, the objectives were to create a virtual environment that can simulate light intensity and spectrum within a soybean canopy grown within an LED growth chamber. Measurements were made at two dates, on two plant sets and at two placements. Simulated light intensities were accurate with a R2 between 0.798 and 0.956; mean absolute percentage errors between 5.85 and 35.14 % and simulated change in light spectrum below the canopy changed similar to the measurements. The chosen GPUFlux model in GroIMP can be used for functional structural plant modelling in response to light spectra and intensity and to explore an optimal experimental design within an LED chamber.","PeriodicalId":268842,"journal":{"name":"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulating light spectrum within a soybean canopy in an LED growth chamber\",\"authors\":\"T. Hitz, M. Henke, S. Graeff‐Hönninger, Sebastian Munz\",\"doi\":\"10.1109/PMA.2018.8611598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge on the effect of light spectra on different crops is important in the exploration of possibilities to regulate crop growth and quality with LED lighting. Functional structural plant modelling can be an important tool to cope with the large number of experimental treatments necessary to identify the effect of specific wavelengths and the interaction with other environmental factors. Therefore, the objectives were to create a virtual environment that can simulate light intensity and spectrum within a soybean canopy grown within an LED growth chamber. Measurements were made at two dates, on two plant sets and at two placements. Simulated light intensities were accurate with a R2 between 0.798 and 0.956; mean absolute percentage errors between 5.85 and 35.14 % and simulated change in light spectrum below the canopy changed similar to the measurements. The chosen GPUFlux model in GroIMP can be used for functional structural plant modelling in response to light spectra and intensity and to explore an optimal experimental design within an LED chamber.\",\"PeriodicalId\":268842,\"journal\":{\"name\":\"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMA.2018.8611598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2018.8611598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解光谱对不同作物的影响对于探索利用LED照明调节作物生长和质量的可能性非常重要。功能结构植物模型可以成为处理大量实验处理所需的重要工具,以确定特定波长的影响以及与其他环境因素的相互作用。因此,目标是创建一个虚拟环境,可以模拟在LED生长室内生长的大豆冠层内的光强度和光谱。测量在两个日期,两个植物组和两个位置进行。模拟光强准确,R2在0.798 ~ 0.956之间;平均绝对百分比误差在5.85 ~ 35.14%之间,模拟的冠层下光谱变化与测量值相似。GroIMP中选择的GPUFlux模型可用于对光谱和强度的响应进行功能性结构植物建模,并探索LED腔室内的最佳实验设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulating light spectrum within a soybean canopy in an LED growth chamber
Knowledge on the effect of light spectra on different crops is important in the exploration of possibilities to regulate crop growth and quality with LED lighting. Functional structural plant modelling can be an important tool to cope with the large number of experimental treatments necessary to identify the effect of specific wavelengths and the interaction with other environmental factors. Therefore, the objectives were to create a virtual environment that can simulate light intensity and spectrum within a soybean canopy grown within an LED growth chamber. Measurements were made at two dates, on two plant sets and at two placements. Simulated light intensities were accurate with a R2 between 0.798 and 0.956; mean absolute percentage errors between 5.85 and 35.14 % and simulated change in light spectrum below the canopy changed similar to the measurements. The chosen GPUFlux model in GroIMP can be used for functional structural plant modelling in response to light spectra and intensity and to explore an optimal experimental design within an LED chamber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional-structural plant model for testing the effect of maize architecture on hourly light distribution in strip-intercropping systems Three-dimensional quantification of intercropping crops in field by ground and aerial photography A dynamic model of xylem and phloem flux in an apple branch Simulating light spectrum within a soybean canopy in an LED growth chamber Influence of Neighboring Plants on the Variation of Red to Far-Red ratio in Intercropping System: Simulation of light quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1