意大利南部卡拉布里亚某隧道水-砂浆相互作用研究

G. Vespasiano, P. Notaro, G. Cianflone
{"title":"意大利南部卡拉布里亚某隧道水-砂浆相互作用研究","authors":"G. Vespasiano, P. Notaro, G. Cianflone","doi":"10.2113/EEG-1978","DOIUrl":null,"url":null,"abstract":"\n In this work, we analyzed the results of a geochemical analysis aimed to define the origin of pH anomalies (pH > 11) in water samples collected inside a tunnel located in southern Calabria (southern Italy). We also analyzed the precipitates found close to the main drainage pipes. The hydrogeochemical study allowed us to identify a main NaOH water facies for the many samples collected close to the tunnel. In addition, the correlation diagrams highlighted high concentrations of Na, K, and Al, unrelated to simple water-rock interaction. Further evaluation excluded the possibility that interaction between the water and the outcropping lithologies was the only cause of the ongoing processes. This consideration is supported by the high Na and K concentrations, which cannot be accounted for by interaction between water and calcareous marl. Excluding a natural origin and some anthropogenic factors, one possible explanation is an interaction between the groundwater and the mortars used for consolidation during the excavation phase of the tunnel. Mortar and concrete degradation in aqueous environments produces a great increase in pH, initially deriving from interstitial fluids containing strong alkali (NaOH and KOH) and non-negligible K and Na concentrations, such as we observed in the collected samples.","PeriodicalId":138906,"journal":{"name":"Environmental and Engineering Geoscience","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Water-mortar Interaction in a Tunnel Located in Southern Calabria (southern Italy)\",\"authors\":\"G. Vespasiano, P. Notaro, G. Cianflone\",\"doi\":\"10.2113/EEG-1978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, we analyzed the results of a geochemical analysis aimed to define the origin of pH anomalies (pH > 11) in water samples collected inside a tunnel located in southern Calabria (southern Italy). We also analyzed the precipitates found close to the main drainage pipes. The hydrogeochemical study allowed us to identify a main NaOH water facies for the many samples collected close to the tunnel. In addition, the correlation diagrams highlighted high concentrations of Na, K, and Al, unrelated to simple water-rock interaction. Further evaluation excluded the possibility that interaction between the water and the outcropping lithologies was the only cause of the ongoing processes. This consideration is supported by the high Na and K concentrations, which cannot be accounted for by interaction between water and calcareous marl. Excluding a natural origin and some anthropogenic factors, one possible explanation is an interaction between the groundwater and the mortars used for consolidation during the excavation phase of the tunnel. Mortar and concrete degradation in aqueous environments produces a great increase in pH, initially deriving from interstitial fluids containing strong alkali (NaOH and KOH) and non-negligible K and Na concentrations, such as we observed in the collected samples.\",\"PeriodicalId\":138906,\"journal\":{\"name\":\"Environmental and Engineering Geoscience\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Engineering Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/EEG-1978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Engineering Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/EEG-1978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在这项工作中,我们分析了地球化学分析的结果,旨在确定位于卡拉布里亚南部(意大利南部)的隧道内收集的水样中pH异常(pH > 11)的起源。我们还分析了主排水管附近的沉淀物。水文地球化学研究使我们能够在隧道附近收集的许多样品中确定主要的NaOH水相。此外,相关图突出了高浓度的Na、K和Al,与简单的水岩相互作用无关。进一步的评价排除了水和露头岩性之间的相互作用是正在进行的过程的唯一原因的可能性。这一考虑得到了高Na和K浓度的支持,这不能由水和钙质泥灰岩之间的相互作用来解释。排除自然原因和一些人为因素,一种可能的解释是地下水和隧道开挖阶段用于固结的砂浆之间的相互作用。砂浆和混凝土在水环境中的降解产生了pH值的大幅增加,最初源于含有强碱(NaOH和KOH)和不可忽略的K和Na浓度的间隙流体,如我们在收集的样品中观察到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water-mortar Interaction in a Tunnel Located in Southern Calabria (southern Italy)
In this work, we analyzed the results of a geochemical analysis aimed to define the origin of pH anomalies (pH > 11) in water samples collected inside a tunnel located in southern Calabria (southern Italy). We also analyzed the precipitates found close to the main drainage pipes. The hydrogeochemical study allowed us to identify a main NaOH water facies for the many samples collected close to the tunnel. In addition, the correlation diagrams highlighted high concentrations of Na, K, and Al, unrelated to simple water-rock interaction. Further evaluation excluded the possibility that interaction between the water and the outcropping lithologies was the only cause of the ongoing processes. This consideration is supported by the high Na and K concentrations, which cannot be accounted for by interaction between water and calcareous marl. Excluding a natural origin and some anthropogenic factors, one possible explanation is an interaction between the groundwater and the mortars used for consolidation during the excavation phase of the tunnel. Mortar and concrete degradation in aqueous environments produces a great increase in pH, initially deriving from interstitial fluids containing strong alkali (NaOH and KOH) and non-negligible K and Na concentrations, such as we observed in the collected samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Loess Is More: Field Investigation and Slope Stability Analysis of the Tanana 440 Landslide, Interior Alaska Treatment and Control of Urban Sewage with Excessive Heavy Metals for Ecological Environment Protection Site Selection for Municipal Solid Waste Landfill: Case Study of Artvin, Turkey Factors Affecting Shrinkage Crack Development in Clay Soils: An Experimental Study RAINFALL TRIGGERING OF POST-FIRE DEBRIS FLOWS OVER A 28-YEAR PERIOD NEAR EL PORTAL, CALIFORNIA, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1