E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang
{"title":"稀疏信号恢复学习迭代收缩阈值算法中的非线性函数","authors":"E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang","doi":"10.1109/SiPS47522.2019.9020469","DOIUrl":null,"url":null,"abstract":"Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Functions in Learned Iterative Shrinkage-Thresholding Algorithm for Sparse Signal Recovery\",\"authors\":\"E. C. Marques, N. Maciel, L. Naviner, Hao Cai, Jun Yang\",\"doi\":\"10.1109/SiPS47522.2019.9020469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Functions in Learned Iterative Shrinkage-Thresholding Algorithm for Sparse Signal Recovery
Compressive sensing requires fewer measurements than Nyquist rate to recover sparse signals, leading to processing and energy saving. The efficiency of this technique strongly depends on the quality of the considered sparse recovery algorithm. This work focuses on a learned iterative shrinkage-thresholding algorithm where iterations are related to layers of a neural network. We analyze the performance of this algorithm for different shrinkage functions. A decrease up to 9dB in the NMSE value is achieved by choosing appropriate shrinkage function. Moreover, the estimation performance can be close to the theoretical performance bound, showing deep learning as a promising tool for sparse signal estimation. This work can be applied in several areas such as image processing, Internet of Things (IoT), cognitive radio networks, and sparse channel estimation for wireless communications.