基于crf的动态增强MR图像药代动力学曲线聚类研究

Jakub Jurek, Mateusz Pelesz, Are Losnegård, L. Reisæter, A. Wojciechowski, A. Klepaczko, O. Halvorsen, C. Beisland, M. Kociński, A. Materka, J. Rørvik, A. Lundervold
{"title":"基于crf的动态增强MR图像药代动力学曲线聚类研究","authors":"Jakub Jurek, Mateusz Pelesz, Are Losnegård, L. Reisæter, A. Wojciechowski, A. Klepaczko, O. Halvorsen, C. Beisland, M. Kociński, A. Materka, J. Rørvik, A. Lundervold","doi":"10.23919/SPA.2018.8563392","DOIUrl":null,"url":null,"abstract":"Traditionally, analysis of Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE MRI) requires pharmacokinetic modelling to derive quantitative physiological parameters of the tissue. Modelling, however, is a complex task and many competing models of contrast agent kinetics and tissue structure were proposed. Alternatively, raw DCE data could be analysed to find correlation with pathology in the tissue or other desired effects, for example by clustering. In this paper, we propose a new method for DCE MRI timeseries clustering. We model the data space as a Conditional Random Field (CRF) and optimize the objective function in order to find cluster labels for all timeseries. The method is unsupervised and fully automatic. We also propose a strategy to speed up the clustering process using Support Vector Machines. We demonstrate the utility of our method on two distinct problems: prostate cancer localization and healthy kidney compartment segmentation.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRF-Based Clustering of Pharmacokinetic Curves from Dynamic Contrast-Enhanced MR Images\",\"authors\":\"Jakub Jurek, Mateusz Pelesz, Are Losnegård, L. Reisæter, A. Wojciechowski, A. Klepaczko, O. Halvorsen, C. Beisland, M. Kociński, A. Materka, J. Rørvik, A. Lundervold\",\"doi\":\"10.23919/SPA.2018.8563392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, analysis of Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE MRI) requires pharmacokinetic modelling to derive quantitative physiological parameters of the tissue. Modelling, however, is a complex task and many competing models of contrast agent kinetics and tissue structure were proposed. Alternatively, raw DCE data could be analysed to find correlation with pathology in the tissue or other desired effects, for example by clustering. In this paper, we propose a new method for DCE MRI timeseries clustering. We model the data space as a Conditional Random Field (CRF) and optimize the objective function in order to find cluster labels for all timeseries. The method is unsupervised and fully automatic. We also propose a strategy to speed up the clustering process using Support Vector Machines. We demonstrate the utility of our method on two distinct problems: prostate cancer localization and healthy kidney compartment segmentation.\",\"PeriodicalId\":265587,\"journal\":{\"name\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SPA.2018.8563392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,动态对比增强磁共振图像(DCE MRI)的分析需要药代动力学建模来获得组织的定量生理参数。然而,建模是一项复杂的任务,并且提出了许多对比剂动力学和组织结构的竞争模型。或者,可以分析原始DCE数据,以发现与组织病理或其他期望效果的相关性,例如通过聚类。本文提出了一种新的DCE MRI时间序列聚类方法。我们将数据空间建模为条件随机场(CRF),并优化目标函数以找到所有时间序列的聚类标签。该方法是无监督的,全自动的。我们还提出了一种利用支持向量机加快聚类过程的策略。我们展示了我们的方法在两个不同的问题上的效用:前列腺癌定位和健康肾隔室分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRF-Based Clustering of Pharmacokinetic Curves from Dynamic Contrast-Enhanced MR Images
Traditionally, analysis of Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE MRI) requires pharmacokinetic modelling to derive quantitative physiological parameters of the tissue. Modelling, however, is a complex task and many competing models of contrast agent kinetics and tissue structure were proposed. Alternatively, raw DCE data could be analysed to find correlation with pathology in the tissue or other desired effects, for example by clustering. In this paper, we propose a new method for DCE MRI timeseries clustering. We model the data space as a Conditional Random Field (CRF) and optimize the objective function in order to find cluster labels for all timeseries. The method is unsupervised and fully automatic. We also propose a strategy to speed up the clustering process using Support Vector Machines. We demonstrate the utility of our method on two distinct problems: prostate cancer localization and healthy kidney compartment segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes Centerline-Radius Polygonal-Mesh Modeling of Bifurcated Blood Vessels in 3D Images using Conformal Mapping Active elimination of tonal components in acoustic signals An adaptive transmission algorithm for an inertial motion capture system in the aspect of energy saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1