考虑网络拓扑不确定性的概率负荷流

Liang Min, Pei Zhang
{"title":"考虑网络拓扑不确定性的概率负荷流","authors":"Liang Min, Pei Zhang","doi":"10.1109/ISAP.2007.4441587","DOIUrl":null,"url":null,"abstract":"Our past research proposed to apply Comulants and Gram-Charlier expansion method to perform probabilistic load flow studies with consideration of generation and load uncertainties. This paper proposed a new method to improve the previous PLF computation method in order to model the network topology uncertainties. This innovative method uses distribution factor concept to model the impact of network uncertainties as a linear function of power injections. Maintaining the linear relationship between line flows and power injections enables applying Cumulants and Gram-Charlier expansion method to compute probabilistic distribution functions of transmission line flows. The proposed method is examined using IEEE 30-bus test system. Numerical comparison with Monte Carlo simulation method is also presented in this paper. Study results indicate that the proposed method has significantly reduced the computational efforts while maintaining a high degree of accuracy.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A Probabilistic Load Flow with Consideration of Network Topology Uncertainties\",\"authors\":\"Liang Min, Pei Zhang\",\"doi\":\"10.1109/ISAP.2007.4441587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our past research proposed to apply Comulants and Gram-Charlier expansion method to perform probabilistic load flow studies with consideration of generation and load uncertainties. This paper proposed a new method to improve the previous PLF computation method in order to model the network topology uncertainties. This innovative method uses distribution factor concept to model the impact of network uncertainties as a linear function of power injections. Maintaining the linear relationship between line flows and power injections enables applying Cumulants and Gram-Charlier expansion method to compute probabilistic distribution functions of transmission line flows. The proposed method is examined using IEEE 30-bus test system. Numerical comparison with Monte Carlo simulation method is also presented in this paper. Study results indicate that the proposed method has significantly reduced the computational efforts while maintaining a high degree of accuracy.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们在过去的研究中提出了应用Comulants和Gram-Charlier展开方法进行考虑发电和负荷不确定性的概率潮流研究。为了对网络拓扑不确定性进行建模,本文提出了一种改进以往PLF计算方法的新方法。该方法采用分配因子的概念,将网络不确定性的影响建模为功率注入的线性函数。维持线路流量与功率注入之间的线性关系,可以应用Cumulants和Gram-Charlier展开法计算输电线路流量的概率分布函数。采用IEEE 30总线测试系统对该方法进行了验证。并与蒙特卡罗模拟方法进行了数值比较。研究结果表明,该方法在保持较高精度的同时,大大减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probabilistic Load Flow with Consideration of Network Topology Uncertainties
Our past research proposed to apply Comulants and Gram-Charlier expansion method to perform probabilistic load flow studies with consideration of generation and load uncertainties. This paper proposed a new method to improve the previous PLF computation method in order to model the network topology uncertainties. This innovative method uses distribution factor concept to model the impact of network uncertainties as a linear function of power injections. Maintaining the linear relationship between line flows and power injections enables applying Cumulants and Gram-Charlier expansion method to compute probabilistic distribution functions of transmission line flows. The proposed method is examined using IEEE 30-bus test system. Numerical comparison with Monte Carlo simulation method is also presented in this paper. Study results indicate that the proposed method has significantly reduced the computational efforts while maintaining a high degree of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1