利用单板计算机在智能电网中进行异常检测

Suzanne J. Matthews, A. S. Leger
{"title":"利用单板计算机在智能电网中进行异常检测","authors":"Suzanne J. Matthews, A. S. Leger","doi":"10.1109/UEMCON.2017.8249031","DOIUrl":null,"url":null,"abstract":"Smart Grid Technology is becoming an integral part of ensuring reliable and resilient operation of the power grid. The high sample rate and time synchronization of Phasor Measurement Units (PMUs) can provide enhanced situational awareness and more detailed information on power system dynamics as compared to traditional SCADA systems. A smart grid system must be able to detect alarm events (such as sudden voltage fluctuations or drops in current) in close to real-time. However, the communication network and bandwidth requirements to transfer large amounts of PMU data for realtime analysis is problematic. In this paper, we propose the use of a decentralized architecture for rapidly analyzing PMU data using single board computers to provide energy efficient monitoring locally in the power grid. This approach reduces communication requirements and enables real-time analysis. We present a novel anomaly detection scheme and test our approach on a real dataset of 1.4 million measurements derived from 8 PMUs from a 1000:1 scale emulation of a working power grid. Our results show that a single Raspberry Pi is sufficient to analyze data from multiple PMUs at a rate suitable for real-time analysis.","PeriodicalId":403890,"journal":{"name":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Leveraging single board computers for anomaly detection in the smart grid\",\"authors\":\"Suzanne J. Matthews, A. S. Leger\",\"doi\":\"10.1109/UEMCON.2017.8249031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart Grid Technology is becoming an integral part of ensuring reliable and resilient operation of the power grid. The high sample rate and time synchronization of Phasor Measurement Units (PMUs) can provide enhanced situational awareness and more detailed information on power system dynamics as compared to traditional SCADA systems. A smart grid system must be able to detect alarm events (such as sudden voltage fluctuations or drops in current) in close to real-time. However, the communication network and bandwidth requirements to transfer large amounts of PMU data for realtime analysis is problematic. In this paper, we propose the use of a decentralized architecture for rapidly analyzing PMU data using single board computers to provide energy efficient monitoring locally in the power grid. This approach reduces communication requirements and enables real-time analysis. We present a novel anomaly detection scheme and test our approach on a real dataset of 1.4 million measurements derived from 8 PMUs from a 1000:1 scale emulation of a working power grid. Our results show that a single Raspberry Pi is sufficient to analyze data from multiple PMUs at a rate suitable for real-time analysis.\",\"PeriodicalId\":403890,\"journal\":{\"name\":\"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON.2017.8249031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2017.8249031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

智能电网技术正成为保障电网可靠、弹性运行的重要组成部分。与传统的SCADA系统相比,相量测量单元(pmu)的高采样率和时间同步可以提供增强的态势感知和更详细的电力系统动态信息。智能电网系统必须能够近乎实时地检测报警事件(如电压突然波动或电流下降)。然而,传输大量PMU数据进行实时分析的通信网络和带宽要求是有问题的。在本文中,我们建议使用分散式架构,使用单板计算机快速分析PMU数据,从而在电网中提供节能监测。这种方法减少了通信需求,并支持实时分析。我们提出了一种新的异常检测方案,并在一个真实数据集上测试了我们的方法,该数据集来自8个pmu的140万次测量,这些测量来自一个工作电网的1000:1比例模拟。我们的研究结果表明,单个树莓派足以以适合实时分析的速率分析来自多个pmu的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging single board computers for anomaly detection in the smart grid
Smart Grid Technology is becoming an integral part of ensuring reliable and resilient operation of the power grid. The high sample rate and time synchronization of Phasor Measurement Units (PMUs) can provide enhanced situational awareness and more detailed information on power system dynamics as compared to traditional SCADA systems. A smart grid system must be able to detect alarm events (such as sudden voltage fluctuations or drops in current) in close to real-time. However, the communication network and bandwidth requirements to transfer large amounts of PMU data for realtime analysis is problematic. In this paper, we propose the use of a decentralized architecture for rapidly analyzing PMU data using single board computers to provide energy efficient monitoring locally in the power grid. This approach reduces communication requirements and enables real-time analysis. We present a novel anomaly detection scheme and test our approach on a real dataset of 1.4 million measurements derived from 8 PMUs from a 1000:1 scale emulation of a working power grid. Our results show that a single Raspberry Pi is sufficient to analyze data from multiple PMUs at a rate suitable for real-time analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated facial expression recognition app development on smart phones using cloud computing Outage probability and system optimization of SSD-based dual-hop relaying system with multiple relays LTE fallback optimization using decision tree Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools Study of a parallel algorithm on pipelined computation of the finite difference schemes on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1