{"title":"不使用帧缓冲的多级提升二维离散小波变换调度方案及并行结构","authors":"B. K. Mohanty, Anurag Mahajan","doi":"10.1049/iet-cds.2012.0398","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a novel scheduling scheme for generating continuous input-blocks for the succeeding processing units of parallel structure to achieve 100% hardware utilisation efficiency (HUE) without block folding. Based on the proposed scheme, we have derived a parallel and pipeline structure for multilevel lifting two-dimensional discrete wavelet transform (DWT). The proposed structure involves regular data-flow and does not require frame-buffer, and calculates DWT levels concurrently. A theoretical comparison shows that the proposed structure for\n J \n= 2 involves 1.25 times more multipliers and adders, 2\n N \nmore registers than those of existing folded block-based structure and offers 1.25 times higher throughput, where\n N \nis the input-image width. Compared with similar existing parallel structure, the proposed structure requires the same number of multipliers and adders, 2.125\n N \nless registers and offers the same throughput rate. Application specific integrated circuit synthesis result shows that the core of the proposed structure for 2-level DWT and image size (512 × 512) involves 41% less area-delay-product and 36% less energy-per-image than those of similar existing parallel structure.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"45 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scheduling-scheme and parallel structure for multi-level lifting two-dimensional discrete wavelet transform without using frame-buffer\",\"authors\":\"B. K. Mohanty, Anurag Mahajan\",\"doi\":\"10.1049/iet-cds.2012.0398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have proposed a novel scheduling scheme for generating continuous input-blocks for the succeeding processing units of parallel structure to achieve 100% hardware utilisation efficiency (HUE) without block folding. Based on the proposed scheme, we have derived a parallel and pipeline structure for multilevel lifting two-dimensional discrete wavelet transform (DWT). The proposed structure involves regular data-flow and does not require frame-buffer, and calculates DWT levels concurrently. A theoretical comparison shows that the proposed structure for\\n J \\n= 2 involves 1.25 times more multipliers and adders, 2\\n N \\nmore registers than those of existing folded block-based structure and offers 1.25 times higher throughput, where\\n N \\nis the input-image width. Compared with similar existing parallel structure, the proposed structure requires the same number of multipliers and adders, 2.125\\n N \\nless registers and offers the same throughput rate. Application specific integrated circuit synthesis result shows that the core of the proposed structure for 2-level DWT and image size (512 × 512) involves 41% less area-delay-product and 36% less energy-per-image than those of similar existing parallel structure.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":\"45 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2012.0398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scheduling-scheme and parallel structure for multi-level lifting two-dimensional discrete wavelet transform without using frame-buffer
In this paper, we have proposed a novel scheduling scheme for generating continuous input-blocks for the succeeding processing units of parallel structure to achieve 100% hardware utilisation efficiency (HUE) without block folding. Based on the proposed scheme, we have derived a parallel and pipeline structure for multilevel lifting two-dimensional discrete wavelet transform (DWT). The proposed structure involves regular data-flow and does not require frame-buffer, and calculates DWT levels concurrently. A theoretical comparison shows that the proposed structure for
J
= 2 involves 1.25 times more multipliers and adders, 2
N
more registers than those of existing folded block-based structure and offers 1.25 times higher throughput, where
N
is the input-image width. Compared with similar existing parallel structure, the proposed structure requires the same number of multipliers and adders, 2.125
N
less registers and offers the same throughput rate. Application specific integrated circuit synthesis result shows that the core of the proposed structure for 2-level DWT and image size (512 × 512) involves 41% less area-delay-product and 36% less energy-per-image than those of similar existing parallel structure.