综合路由方案和逆变开关,开发了移动可控节能系统

J. Chen
{"title":"综合路由方案和逆变开关,开发了移动可控节能系统","authors":"J. Chen","doi":"10.1049/iet-cds.2018.0086","DOIUrl":null,"url":null,"abstract":"The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system\",\"authors\":\"J. Chen\",\"doi\":\"10.1049/iet-cds.2018.0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2018.0086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2018.0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将逆变器开关方案和路由方案相结合,开发了移动控制节能系统。针对n沟道金属氧化物半导体场效应晶体管作为反相开关的瞬态响应问题,提出了一种实现反相开关的路由方案。可以说,前面提到的所有方案对于解决模拟处理电路的设计和Android应用程序(或app)的实现问题都是非常具有挑战性的。实验验证了所研制的MCESS能自动切换,适当调节能量输出。采用MCESS解决方案的控制系统可以取代传统的可持续能源系统,并获得更长的使用寿命和稳定的存储设备状态。此外,所提出的MCESS集成了在使用Android平台的智能设备上开发的应用程序与不同的无线协议,如WiFi,蓝牙,以非接触式控制系统。此外,还为观众提供了许多MCESS开发的经验,例如实现了一种采用无线局域网与WiFi协议传输稳压电路数据包和即时反馈显示的路由解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system
The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1