一种提高泛化能力的2范数正则化水下目标分类器

C. S. Chandran, S. Kamal, A. Mujeeb, M. Supriya
{"title":"一种提高泛化能力的2范数正则化水下目标分类器","authors":"C. S. Chandran, S. Kamal, A. Mujeeb, M. Supriya","doi":"10.1109/SYMPOL.2015.7581168","DOIUrl":null,"url":null,"abstract":"Improving the generalization capability of a target classifier has become one of the primary challenges in underwater target recognition systems. This paper addresses the task of classification in the framework of ill-posed inverse problems, and discusses the problem of overfitting, the solution to which has been formulated using the technique of regularization. l 2 norm regularization on a logistic regression classifier has been implemented utilizing Newton's method to minimize the cost function for parameter optimization. Evaluation results with the help of Receiver Operating Characteristics and classification accuracy reveal the performance improvement of the classifier while making predictions on unseen samples.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An l 2-norm regularized underwater target classifier with improved generalization capability\",\"authors\":\"C. S. Chandran, S. Kamal, A. Mujeeb, M. Supriya\",\"doi\":\"10.1109/SYMPOL.2015.7581168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the generalization capability of a target classifier has become one of the primary challenges in underwater target recognition systems. This paper addresses the task of classification in the framework of ill-posed inverse problems, and discusses the problem of overfitting, the solution to which has been formulated using the technique of regularization. l 2 norm regularization on a logistic regression classifier has been implemented utilizing Newton's method to minimize the cost function for parameter optimization. Evaluation results with the help of Receiver Operating Characteristics and classification accuracy reveal the performance improvement of the classifier while making predictions on unseen samples.\",\"PeriodicalId\":127848,\"journal\":{\"name\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYMPOL.2015.7581168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高目标分类器的泛化能力已成为水下目标识别系统面临的主要挑战之一。本文讨论了不适定逆问题框架下的分类问题,讨论了过拟合问题,并利用正则化技术给出了过拟合问题的解。利用牛顿最小化代价函数的方法对逻辑回归分类器进行了2范数正则化。基于Receiver Operating Characteristics和classification accuracy的评估结果表明,在对未知样本进行预测时,分类器的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An l 2-norm regularized underwater target classifier with improved generalization capability
Improving the generalization capability of a target classifier has become one of the primary challenges in underwater target recognition systems. This paper addresses the task of classification in the framework of ill-posed inverse problems, and discusses the problem of overfitting, the solution to which has been formulated using the technique of regularization. l 2 norm regularization on a logistic regression classifier has been implemented utilizing Newton's method to minimize the cost function for parameter optimization. Evaluation results with the help of Receiver Operating Characteristics and classification accuracy reveal the performance improvement of the classifier while making predictions on unseen samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse reconstruction based direction of arrival estimation of underwater targets Experimental observation of direction-of-arrival (DOA) estimation algorithms in a tank environment for sonar application Data-model validation of broadband normal mode reverberation model An l 2-norm regularized underwater target classifier with improved generalization capability Real time target recognition using Labview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1