利用深度卷积神经网络从超声成像中分级产前肾积水

Kiret Dhindsa, Lauren C. Smail, M. McGrath, Luis H. Braga, S. Becker, R. Sonnadara
{"title":"利用深度卷积神经网络从超声成像中分级产前肾积水","authors":"Kiret Dhindsa, Lauren C. Smail, M. McGrath, Luis H. Braga, S. Becker, R. Sonnadara","doi":"10.1109/CRV.2018.00021","DOIUrl":null,"url":null,"abstract":"We evaluate the performance of a Deep Convolutional Neural Network in grading the severity of prenatal hydronephrosis (PHN), one of the most common congenital urological anomalies, from renal ultrasound images. We present results on a variety of classification tasks based on clinically defined grades of severity, including predictions of whether or not an ultrasound image represents a case that is at high risk for further complications requiring surgical intervention with approximately 80% accuracy. The prediction rates obtained by the model are well beyond the rates of agreement among trained clinicians, suggesting that this work can lead to a useful diagnostic aid.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"48 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks\",\"authors\":\"Kiret Dhindsa, Lauren C. Smail, M. McGrath, Luis H. Braga, S. Becker, R. Sonnadara\",\"doi\":\"10.1109/CRV.2018.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the performance of a Deep Convolutional Neural Network in grading the severity of prenatal hydronephrosis (PHN), one of the most common congenital urological anomalies, from renal ultrasound images. We present results on a variety of classification tasks based on clinically defined grades of severity, including predictions of whether or not an ultrasound image represents a case that is at high risk for further complications requiring surgical intervention with approximately 80% accuracy. The prediction rates obtained by the model are well beyond the rates of agreement among trained clinicians, suggesting that this work can lead to a useful diagnostic aid.\",\"PeriodicalId\":281779,\"journal\":{\"name\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"volume\":\"48 27\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2018.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们评估的性能深度卷积神经网络分级的严重程度产前肾积水(PHN),最常见的先天性泌尿系统异常之一,从肾脏超声图像。我们提出了基于临床定义的严重程度等级的各种分类任务的结果,包括预测超声图像是否代表需要手术干预的高风险病例,准确率约为80%。该模型获得的预测率远远超过了训练有素的临床医生之间的一致性,这表明这项工作可以导致有用的诊断辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks
We evaluate the performance of a Deep Convolutional Neural Network in grading the severity of prenatal hydronephrosis (PHN), one of the most common congenital urological anomalies, from renal ultrasound images. We present results on a variety of classification tasks based on clinically defined grades of severity, including predictions of whether or not an ultrasound image represents a case that is at high risk for further complications requiring surgical intervention with approximately 80% accuracy. The prediction rates obtained by the model are well beyond the rates of agreement among trained clinicians, suggesting that this work can lead to a useful diagnostic aid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1