基于无人机的移动边缘计算系统的节能资源分配

Yu Cheng, Yangzhe Liao, X. Zhai
{"title":"基于无人机的移动边缘计算系统的节能资源分配","authors":"Yu Cheng, Yangzhe Liao, X. Zhai","doi":"10.1109/UCC48980.2020.00064","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been gained significant attention from mobile network operators (MNOs) to provision low-latency wireless big data applications, where a number of ground resource-limited user equipments (UEs) can be served by UAVs equipped with powerful computing resources, in comparison with UEs. In this paper, a novel UAV-empowered mobile edge computing (MEC) network architecture is considered. An energy consumption and task execution delay minimization multi-objective optimization problem is formulated, subject to numerous QoS constraints. A heuristic algorithm is proposed to solve the challenging optimization problem, which consists of the task assignment, differential evolution (DE)-aided and non-dominated sort steps. The selected key performance of the proposed algorithm is given and compared with the existing advanced particle swarm optimization (PSO) and non-dominated sorting genetic algorithm II (NSGA-II). The results show that the proposed heuristic algorithm promises higher energy efficiency than PSO and NSGA-II under the same task execution time cost.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"83 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Energy-efficient Resource Allocation for UAV-empowered Mobile Edge Computing System\",\"authors\":\"Yu Cheng, Yangzhe Liao, X. Zhai\",\"doi\":\"10.1109/UCC48980.2020.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) have been gained significant attention from mobile network operators (MNOs) to provision low-latency wireless big data applications, where a number of ground resource-limited user equipments (UEs) can be served by UAVs equipped with powerful computing resources, in comparison with UEs. In this paper, a novel UAV-empowered mobile edge computing (MEC) network architecture is considered. An energy consumption and task execution delay minimization multi-objective optimization problem is formulated, subject to numerous QoS constraints. A heuristic algorithm is proposed to solve the challenging optimization problem, which consists of the task assignment, differential evolution (DE)-aided and non-dominated sort steps. The selected key performance of the proposed algorithm is given and compared with the existing advanced particle swarm optimization (PSO) and non-dominated sorting genetic algorithm II (NSGA-II). The results show that the proposed heuristic algorithm promises higher energy efficiency than PSO and NSGA-II under the same task execution time cost.\",\"PeriodicalId\":125849,\"journal\":{\"name\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"83 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC48980.2020.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

无人机(uav)已经得到了移动网络运营商(mno)的极大关注,以提供低延迟无线大数据应用,与ue相比,配备强大计算资源的无人机可以为许多地面资源有限的用户设备(ue)提供服务。本文提出了一种基于无人机的移动边缘计算(MEC)网络架构。提出了一个受多个QoS约束的能量消耗和任务执行延迟最小化多目标优化问题。提出了一种启发式算法来解决具有挑战性的优化问题,该算法由任务分配、差分进化辅助和非支配排序步骤组成。给出了算法的关键性能,并与现有的先进粒子群算法(PSO)和非支配排序遗传算法II (NSGA-II)进行了比较。结果表明,在相同的任务执行时间成本下,所提出的启发式算法比PSO和NSGA-II具有更高的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient Resource Allocation for UAV-empowered Mobile Edge Computing System
Unmanned aerial vehicles (UAVs) have been gained significant attention from mobile network operators (MNOs) to provision low-latency wireless big data applications, where a number of ground resource-limited user equipments (UEs) can be served by UAVs equipped with powerful computing resources, in comparison with UEs. In this paper, a novel UAV-empowered mobile edge computing (MEC) network architecture is considered. An energy consumption and task execution delay minimization multi-objective optimization problem is formulated, subject to numerous QoS constraints. A heuristic algorithm is proposed to solve the challenging optimization problem, which consists of the task assignment, differential evolution (DE)-aided and non-dominated sort steps. The selected key performance of the proposed algorithm is given and compared with the existing advanced particle swarm optimization (PSO) and non-dominated sorting genetic algorithm II (NSGA-II). The results show that the proposed heuristic algorithm promises higher energy efficiency than PSO and NSGA-II under the same task execution time cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain Mobility Solution for Charging Transactions of Electrical Vehicles Open-source Serverless Architectures: an Evaluation of Apache OpenWhisk Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks Message from the B2D2LM 2020 Workshop Chairs Dynamic Network Slicing in Fog Computing for Mobile Users in MobFogSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1