T. Matsumiya, Daniel Garcia-Rodriguez, A. Nebu, N. Takamura
{"title":"一种局部凸耳应力的简化热负荷评估方法","authors":"T. Matsumiya, Daniel Garcia-Rodriguez, A. Nebu, N. Takamura","doi":"10.1115/pvp2019-93127","DOIUrl":null,"url":null,"abstract":"\n In this work an evaluation method for local thermal stresses on class 1 piping due to U-shaped lugs is presented.\n First, a three-dimensional finite element analysis (3D-FEA) is used to perform a thermal transient evaluation, obtaining the time-dependent temperature distribution of a realistic range of pipe-lug systems. These results are then used as an input for both a structural 3D-FEA and the corresponding thermal stress term in Non-Mandatory Appendix Y [1]. It was seen that the formula in Appendix-Y cannot account for the thermal stresses obtained through the detailed FEA evaluation.\n A parameter study using a simplified two-dimensional (2D) FEA approach, shows that the localized thermal stresses due to lugs are significantly affected by: (1) pipe-to-lug thickness ratio, (2) distance between adjacent lugs, and (3) lug height. A set of correction coefficients depending on these parameters is therefore proposed.\n When applying the proposed correction coefficients to the Appendix Y method, adequately conservative (when compared with 3D FEA results) stresses can be obtained. Since these correction coefficients can be obtained from simple geometric considerations, the proposed method successfully accounts for the complex lug-to-lug interaction while retaining the simplicity of the original Appendix Y approach.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simplified Thermal Load Evaluation Method for Localized Lug Stresses Beyond Sec. III Appendix-Y\",\"authors\":\"T. Matsumiya, Daniel Garcia-Rodriguez, A. Nebu, N. Takamura\",\"doi\":\"10.1115/pvp2019-93127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work an evaluation method for local thermal stresses on class 1 piping due to U-shaped lugs is presented.\\n First, a three-dimensional finite element analysis (3D-FEA) is used to perform a thermal transient evaluation, obtaining the time-dependent temperature distribution of a realistic range of pipe-lug systems. These results are then used as an input for both a structural 3D-FEA and the corresponding thermal stress term in Non-Mandatory Appendix Y [1]. It was seen that the formula in Appendix-Y cannot account for the thermal stresses obtained through the detailed FEA evaluation.\\n A parameter study using a simplified two-dimensional (2D) FEA approach, shows that the localized thermal stresses due to lugs are significantly affected by: (1) pipe-to-lug thickness ratio, (2) distance between adjacent lugs, and (3) lug height. A set of correction coefficients depending on these parameters is therefore proposed.\\n When applying the proposed correction coefficients to the Appendix Y method, adequately conservative (when compared with 3D FEA results) stresses can be obtained. Since these correction coefficients can be obtained from simple geometric considerations, the proposed method successfully accounts for the complex lug-to-lug interaction while retaining the simplicity of the original Appendix Y approach.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simplified Thermal Load Evaluation Method for Localized Lug Stresses Beyond Sec. III Appendix-Y
In this work an evaluation method for local thermal stresses on class 1 piping due to U-shaped lugs is presented.
First, a three-dimensional finite element analysis (3D-FEA) is used to perform a thermal transient evaluation, obtaining the time-dependent temperature distribution of a realistic range of pipe-lug systems. These results are then used as an input for both a structural 3D-FEA and the corresponding thermal stress term in Non-Mandatory Appendix Y [1]. It was seen that the formula in Appendix-Y cannot account for the thermal stresses obtained through the detailed FEA evaluation.
A parameter study using a simplified two-dimensional (2D) FEA approach, shows that the localized thermal stresses due to lugs are significantly affected by: (1) pipe-to-lug thickness ratio, (2) distance between adjacent lugs, and (3) lug height. A set of correction coefficients depending on these parameters is therefore proposed.
When applying the proposed correction coefficients to the Appendix Y method, adequately conservative (when compared with 3D FEA results) stresses can be obtained. Since these correction coefficients can be obtained from simple geometric considerations, the proposed method successfully accounts for the complex lug-to-lug interaction while retaining the simplicity of the original Appendix Y approach.