基于网页特性的特定语言抓取

Masomeh Azimzadeh, Alireza Yari, M. Kargar
{"title":"基于网页特性的特定语言抓取","authors":"Masomeh Azimzadeh, Alireza Yari, M. Kargar","doi":"10.1109/MCIT.2010.5444865","DOIUrl":null,"url":null,"abstract":"Since Word Wide Web contains large set of data in different languages, retrieving language specific information creates a new challenge in information retrieval called language specific crawling. In this paper, a new approach is purposed for language specific crawling in which a combination of some selected content and context features of web documents have been applied. This approach has been implemented for Persian language and evaluated in Iranian web domain. The evaluation results show how this approach can improve the performance of crawling from speed and coverage points of view.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":" 30","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Language specific crawling based on web pages features\",\"authors\":\"Masomeh Azimzadeh, Alireza Yari, M. Kargar\",\"doi\":\"10.1109/MCIT.2010.5444865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since Word Wide Web contains large set of data in different languages, retrieving language specific information creates a new challenge in information retrieval called language specific crawling. In this paper, a new approach is purposed for language specific crawling in which a combination of some selected content and context features of web documents have been applied. This approach has been implemented for Persian language and evaluated in Iranian web domain. The evaluation results show how this approach can improve the performance of crawling from speed and coverage points of view.\",\"PeriodicalId\":285648,\"journal\":{\"name\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"volume\":\" 30\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCIT.2010.5444865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于Word Wide Web包含大量不同语言的数据,检索特定语言的信息给信息检索带来了一个新的挑战,即特定语言爬行。本文提出了一种针对特定语言爬行的新方法,该方法结合了web文档的一些选定内容和上下文特征。该方法已在波斯语中实施,并在伊朗网络域进行了评估。评估结果表明,从速度和覆盖范围的角度来看,该方法可以提高爬行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Language specific crawling based on web pages features
Since Word Wide Web contains large set of data in different languages, retrieving language specific information creates a new challenge in information retrieval called language specific crawling. In this paper, a new approach is purposed for language specific crawling in which a combination of some selected content and context features of web documents have been applied. This approach has been implemented for Persian language and evaluated in Iranian web domain. The evaluation results show how this approach can improve the performance of crawling from speed and coverage points of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1