Silentium !运行-分析-消除DB/OS堆栈中的噪声

W. Mauerer, Ralf Ramsauer, Edson Ramiro Lucas Filho, Stefanie Scherzinger
{"title":"Silentium !运行-分析-消除DB/OS堆栈中的噪声","authors":"W. Mauerer, Ralf Ramsauer, Edson Ramiro Lucas Filho, Stefanie Scherzinger","doi":"10.18420/btw2021-21","DOIUrl":null,"url":null,"abstract":"When multiple tenants compete for resources, database performance tends to suffer. Yet there are scenarios where guaranteed sub-millisecond latencies are crucial, such as in real-time data processing, IoT devices, or when operating in safety-critical environments. In this paper, we study how to make query latencies deterministic in the face of noise (whether caused by other tenants or unrelated operating system tasks). We perform controlled experiments with an in-memory database engine in a multi-tenant setting, where we successively eradicate noisy interference from within the system software stack, to the point where the engine runs close to bare-metal on the underlying hardware. We show that we can achieve query latencies comparable to the database engine running as the sole tenant, but without noticeably impacting the workload of competing tenants. We discuss these results in the context of ongoing efforts to build custom operating systems for database workloads, and point out that for certain use cases, the margin for improvement is rather narrow. In fact, for scenarios like ours, existing operating systems might just be good enough, provided that they are expertly configured. We then critically discuss these findings in the light of a broader family of database systems (e.g., including disk-based), and how to extend the approach of this paper accordingly.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"19 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Silentium! Run-Analyse-Eradicate the Noise out of the DB/OS Stack\",\"authors\":\"W. Mauerer, Ralf Ramsauer, Edson Ramiro Lucas Filho, Stefanie Scherzinger\",\"doi\":\"10.18420/btw2021-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When multiple tenants compete for resources, database performance tends to suffer. Yet there are scenarios where guaranteed sub-millisecond latencies are crucial, such as in real-time data processing, IoT devices, or when operating in safety-critical environments. In this paper, we study how to make query latencies deterministic in the face of noise (whether caused by other tenants or unrelated operating system tasks). We perform controlled experiments with an in-memory database engine in a multi-tenant setting, where we successively eradicate noisy interference from within the system software stack, to the point where the engine runs close to bare-metal on the underlying hardware. We show that we can achieve query latencies comparable to the database engine running as the sole tenant, but without noticeably impacting the workload of competing tenants. We discuss these results in the context of ongoing efforts to build custom operating systems for database workloads, and point out that for certain use cases, the margin for improvement is rather narrow. In fact, for scenarios like ours, existing operating systems might just be good enough, provided that they are expertly configured. We then critically discuss these findings in the light of a broader family of database systems (e.g., including disk-based), and how to extend the approach of this paper accordingly.\",\"PeriodicalId\":421643,\"journal\":{\"name\":\"Datenbanksysteme für Business, Technologie und Web\",\"volume\":\"19 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Datenbanksysteme für Business, Technologie und Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18420/btw2021-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/btw2021-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

当多个租户竞争资源时,数据库性能往往会受到影响。然而,在某些情况下,保证亚毫秒级的延迟至关重要,例如在实时数据处理、物联网设备或在安全关键环境中运行时。在本文中,我们研究了如何在面对噪声(无论是由其他租户还是不相关的操作系统任务引起的)时使查询延迟具有确定性。我们在多租户设置中使用内存数据库引擎执行受控实验,其中我们逐步消除系统软件堆栈内部的噪声干扰,直到引擎在底层硬件上运行接近裸机的程度。我们可以实现与作为唯一承租者运行的数据库引擎相当的查询延迟,但不会明显影响竞争承租者的工作负载。我们将在为数据库工作负载构建定制操作系统的持续努力的背景下讨论这些结果,并指出对于某些用例,改进的余地相当小。事实上,对于像我们这样的场景,现有的操作系统可能已经足够好了,只要它们经过专业配置即可。然后,我们根据更广泛的数据库系统家族(例如,包括基于磁盘的)批判性地讨论这些发现,以及如何相应地扩展本文的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silentium! Run-Analyse-Eradicate the Noise out of the DB/OS Stack
When multiple tenants compete for resources, database performance tends to suffer. Yet there are scenarios where guaranteed sub-millisecond latencies are crucial, such as in real-time data processing, IoT devices, or when operating in safety-critical environments. In this paper, we study how to make query latencies deterministic in the face of noise (whether caused by other tenants or unrelated operating system tasks). We perform controlled experiments with an in-memory database engine in a multi-tenant setting, where we successively eradicate noisy interference from within the system software stack, to the point where the engine runs close to bare-metal on the underlying hardware. We show that we can achieve query latencies comparable to the database engine running as the sole tenant, but without noticeably impacting the workload of competing tenants. We discuss these results in the context of ongoing efforts to build custom operating systems for database workloads, and point out that for certain use cases, the margin for improvement is rather narrow. In fact, for scenarios like ours, existing operating systems might just be good enough, provided that they are expertly configured. We then critically discuss these findings in the light of a broader family of database systems (e.g., including disk-based), and how to extend the approach of this paper accordingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SportsTables: A new Corpus for Semantic Type Detection Accelerating Large Table Scan using Processing-In-Memory Technology The InsightsNet Climate Change Corpus (ICCC) On the State of German (Abstractive) Text Summarization The Easiest Way of Turning your Relational Database into a Blockchain - and the Cost of Doing So
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1