基于q -不相关抽象的强化学习表示

Shuai Hao, Luntong Li, Minsong Liu, Yuanheng Zhu, Dongbin Zhao
{"title":"基于q -不相关抽象的强化学习表示","authors":"Shuai Hao, Luntong Li, Minsong Liu, Yuanheng Zhu, Dongbin Zhao","doi":"10.1109/ICICIP53388.2021.9642160","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of deep reinforcement learning (DRL) algorithm in high-dimensional observation environments, we propose a new auxiliary task to learn representations to aggregate task-relevant information of observations. Inspired by Q-irrelevance abstraction, our auxiliary task trains a deep Q-network (DQN) to predict the true Q value distribution over all discrete actions. Then we use the output of DQN to train the encoder to discriminate states with different Q values. The encoder is used as the representation of proximal policy optimization (PPO). The resulting algorithm is called as Q-irrelevance Abstraction for Reinforcement Learning (QIARL). After training, the encoder can aggregate states with similar Q value distributions together for any policy and any action. Thus the encoder can encode the important information that is relevant to reinforcement learning task. We test QIARL in four Procgen environments compare with PPO, A2C and Rainbow. The experimental results show QIARL outperforms the other three algorithms.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"30 52","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Representation with Q-irrelevance Abstraction for Reinforcement Learning\",\"authors\":\"Shuai Hao, Luntong Li, Minsong Liu, Yuanheng Zhu, Dongbin Zhao\",\"doi\":\"10.1109/ICICIP53388.2021.9642160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the performance of deep reinforcement learning (DRL) algorithm in high-dimensional observation environments, we propose a new auxiliary task to learn representations to aggregate task-relevant information of observations. Inspired by Q-irrelevance abstraction, our auxiliary task trains a deep Q-network (DQN) to predict the true Q value distribution over all discrete actions. Then we use the output of DQN to train the encoder to discriminate states with different Q values. The encoder is used as the representation of proximal policy optimization (PPO). The resulting algorithm is called as Q-irrelevance Abstraction for Reinforcement Learning (QIARL). After training, the encoder can aggregate states with similar Q value distributions together for any policy and any action. Thus the encoder can encode the important information that is relevant to reinforcement learning task. We test QIARL in four Procgen environments compare with PPO, A2C and Rainbow. The experimental results show QIARL outperforms the other three algorithms.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"30 52\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高深度强化学习(DRL)算法在高维观测环境中的性能,我们提出了一种新的辅助任务来学习表征,以聚合观测的任务相关信息。受Q不相关抽象的启发,我们的辅助任务训练一个深度Q网络(DQN)来预测所有离散动作的真实Q值分布。然后我们使用DQN的输出来训练编码器区分不同Q值的状态。编码器被用作近端策略优化(PPO)的表示。由此产生的算法被称为q -不相关抽象强化学习(QIARL)。经过训练后,编码器可以将具有相似Q值分布的状态聚合在一起,用于任何策略和任何动作。这样编码器就可以对与强化学习任务相关的重要信息进行编码。我们在四个Procgen环境中对QIARL进行了测试,并与PPO、A2C和Rainbow进行了比较。实验结果表明,QIARL算法优于其他三种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Representation with Q-irrelevance Abstraction for Reinforcement Learning
In order to improve the performance of deep reinforcement learning (DRL) algorithm in high-dimensional observation environments, we propose a new auxiliary task to learn representations to aggregate task-relevant information of observations. Inspired by Q-irrelevance abstraction, our auxiliary task trains a deep Q-network (DQN) to predict the true Q value distribution over all discrete actions. Then we use the output of DQN to train the encoder to discriminate states with different Q values. The encoder is used as the representation of proximal policy optimization (PPO). The resulting algorithm is called as Q-irrelevance Abstraction for Reinforcement Learning (QIARL). After training, the encoder can aggregate states with similar Q value distributions together for any policy and any action. Thus the encoder can encode the important information that is relevant to reinforcement learning task. We test QIARL in four Procgen environments compare with PPO, A2C and Rainbow. The experimental results show QIARL outperforms the other three algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1