{"title":"用Beta回归建模协变量校正ROC","authors":"Sarah A. Stanley, J. Tubbs","doi":"10.11648/J.SJAMS.20180604.11","DOIUrl":null,"url":null,"abstract":"Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"1980 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Beta Regression for Modeling a Covariate Adjusted ROC\",\"authors\":\"Sarah A. Stanley, J. Tubbs\",\"doi\":\"10.11648/J.SJAMS.20180604.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"1980 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20180604.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20180604.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beta Regression for Modeling a Covariate Adjusted ROC
Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.