R. J. Nowling, Samuel H. Keyser, Alex R. Moran, John G. Peters, Daniel Leskiewicz
{"title":"大的、多态反转的片段和基因分型","authors":"R. J. Nowling, Samuel H. Keyser, Alex R. Moran, John G. Peters, Daniel Leskiewicz","doi":"10.1109/eIT57321.2023.10187331","DOIUrl":null,"url":null,"abstract":"Large, polymorphic inversions can contribute to population structure and enable mutually-exclusive adaptations to survive in the same population. Current methods for detecting inversions from single-nucleotide polymorphisms (SNPs) called from population genomics data require an experienced, human user to prepare the data and interpret the results. Ideally, these methods would be completely automated yet robust to allow usage by inexperienced users. Towards this goal, automated approaches for segmentation of inversions and inference of sample genotypes are introduced and evaluated on chromosomes from flies, mosquitoes, and prairie sunflowers.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"5 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmenting and Genotyping Large, Polymorphic Inversions\",\"authors\":\"R. J. Nowling, Samuel H. Keyser, Alex R. Moran, John G. Peters, Daniel Leskiewicz\",\"doi\":\"10.1109/eIT57321.2023.10187331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large, polymorphic inversions can contribute to population structure and enable mutually-exclusive adaptations to survive in the same population. Current methods for detecting inversions from single-nucleotide polymorphisms (SNPs) called from population genomics data require an experienced, human user to prepare the data and interpret the results. Ideally, these methods would be completely automated yet robust to allow usage by inexperienced users. Towards this goal, automated approaches for segmentation of inversions and inference of sample genotypes are introduced and evaluated on chromosomes from flies, mosquitoes, and prairie sunflowers.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"5 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmenting and Genotyping Large, Polymorphic Inversions
Large, polymorphic inversions can contribute to population structure and enable mutually-exclusive adaptations to survive in the same population. Current methods for detecting inversions from single-nucleotide polymorphisms (SNPs) called from population genomics data require an experienced, human user to prepare the data and interpret the results. Ideally, these methods would be completely automated yet robust to allow usage by inexperienced users. Towards this goal, automated approaches for segmentation of inversions and inference of sample genotypes are introduced and evaluated on chromosomes from flies, mosquitoes, and prairie sunflowers.