基于交互多模型和概率数据关联(IMM-PDA)算法的图像手部跟踪

Shunguang Wu, L. Hong, Francis K. H. Quek
{"title":"基于交互多模型和概率数据关联(IMM-PDA)算法的图像手部跟踪","authors":"Shunguang Wu, L. Hong, Francis K. H. Quek","doi":"10.1109/CVPRW.2003.10050","DOIUrl":null,"url":null,"abstract":"Traditional image based hand tracking uses a single Kalman filter to estimate and predict the hand state (position, velocity, and acceleration). However, this approach may fail in the case of large maneuvers and cluttered measurements. In this paper we propose to use the interacting multiple model (IMM) filter to catch a maneuver and the probabilistic data association (PDA) method to process noisy measurements and false alarms. A theoretical framework of image based hand tracking by IMM-PDA is set up. Experiment results from several video segments show that IMM-PDA can successfully track hand motions in a natural conversational environment.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"257 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image Based Hand Tracking via Interacting Multiple Model and Probabilistic Data Association (IMM-PDA) Algorithm\",\"authors\":\"Shunguang Wu, L. Hong, Francis K. H. Quek\",\"doi\":\"10.1109/CVPRW.2003.10050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional image based hand tracking uses a single Kalman filter to estimate and predict the hand state (position, velocity, and acceleration). However, this approach may fail in the case of large maneuvers and cluttered measurements. In this paper we propose to use the interacting multiple model (IMM) filter to catch a maneuver and the probabilistic data association (PDA) method to process noisy measurements and false alarms. A theoretical framework of image based hand tracking by IMM-PDA is set up. Experiment results from several video segments show that IMM-PDA can successfully track hand motions in a natural conversational environment.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"257 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的基于图像的手部跟踪使用单个卡尔曼滤波器来估计和预测手部状态(位置、速度和加速度)。然而,这种方法在大型机动和杂乱测量的情况下可能会失败。本文提出用交互多模型(IMM)滤波捕捉机动,用概率数据关联(PDA)方法处理噪声测量和虚警。建立了基于图像的IMM-PDA手部跟踪的理论框架。来自多个视频片段的实验结果表明,IMM-PDA可以成功地跟踪自然会话环境中的手部动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Based Hand Tracking via Interacting Multiple Model and Probabilistic Data Association (IMM-PDA) Algorithm
Traditional image based hand tracking uses a single Kalman filter to estimate and predict the hand state (position, velocity, and acceleration). However, this approach may fail in the case of large maneuvers and cluttered measurements. In this paper we propose to use the interacting multiple model (IMM) filter to catch a maneuver and the probabilistic data association (PDA) method to process noisy measurements and false alarms. A theoretical framework of image based hand tracking by IMM-PDA is set up. Experiment results from several video segments show that IMM-PDA can successfully track hand motions in a natural conversational environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Factorization Approach for Activity Recognition Optical flow estimation in omnidirectional images using wavelet approach Reckless motion estimation from omnidirectional image and inertial measurements Statistical Error Propagation in 3D Modeling From Monocular Video Learning and Perceptual Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1