多视图几何纹理映射2D图像到3D范围数据

Lingyun Liu, G. Yu, G. Wolberg, Siavash Zokai
{"title":"多视图几何纹理映射2D图像到3D范围数据","authors":"Lingyun Liu, G. Yu, G. Wolberg, Siavash Zokai","doi":"10.1109/CVPR.2006.204","DOIUrl":null,"url":null,"abstract":"The photorealistic modeling of large-scale scenes, such as urban structures, requires a fusion of range sensing technology and traditional digital photography. This paper presents a system that integrates multiview geometry and automated 3D registration techniques for texture mapping 2D images onto 3D range data. The 3D range scans and the 2D photographs are respectively used to generate a pair of 3D models of the scene. The first model consists of a dense 3D point cloud, produced by using a 3D-to-3D registration method that matches 3D lines in the range images. The second model consists of a sparse 3D point cloud, produced by applying a multiview geometry (structure-from-motion) algorithm directly on a sequence of 2D photographs. This paper introduces a novel algorithm for automatically recovering the rotation, scale, and translation that best aligns the dense and sparse models. This alignment is necessary to enable the photographs to be optimally texture mapped onto the dense model. The contribution of this work is that it merges the benefits of multiview geometry with automated registration of 3D range scans to produce photorealistic models with minimal human interaction. We present results from experiments in large-scale urban scenes.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"68 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Multiview Geometry for Texture Mapping 2D Images Onto 3D Range Data\",\"authors\":\"Lingyun Liu, G. Yu, G. Wolberg, Siavash Zokai\",\"doi\":\"10.1109/CVPR.2006.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photorealistic modeling of large-scale scenes, such as urban structures, requires a fusion of range sensing technology and traditional digital photography. This paper presents a system that integrates multiview geometry and automated 3D registration techniques for texture mapping 2D images onto 3D range data. The 3D range scans and the 2D photographs are respectively used to generate a pair of 3D models of the scene. The first model consists of a dense 3D point cloud, produced by using a 3D-to-3D registration method that matches 3D lines in the range images. The second model consists of a sparse 3D point cloud, produced by applying a multiview geometry (structure-from-motion) algorithm directly on a sequence of 2D photographs. This paper introduces a novel algorithm for automatically recovering the rotation, scale, and translation that best aligns the dense and sparse models. This alignment is necessary to enable the photographs to be optimally texture mapped onto the dense model. The contribution of this work is that it merges the benefits of multiview geometry with automated registration of 3D range scans to produce photorealistic models with minimal human interaction. We present results from experiments in large-scale urban scenes.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"68 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

城市建筑等大型场景的逼真建模需要将距离传感技术与传统数码摄影技术相融合。本文提出了一个集成多视点几何和自动三维配准技术的系统,用于将二维图像纹理映射到三维距离数据上。分别使用三维距离扫描和二维照片生成一对场景的三维模型。第一个模型由密集的3D点云组成,使用3D到3D配准方法匹配范围图像中的3D线。第二个模型由一个稀疏的3D点云组成,该点云是通过直接对一系列2D照片应用多视图几何(运动结构)算法产生的。本文介绍了一种自动恢复旋转、缩放和平移的新算法,该算法可以使密集模型和稀疏模型最好地对齐。这种对齐是必要的,以使照片被最佳纹理映射到密集的模型。这项工作的贡献在于,它将多视图几何的好处与3D范围扫描的自动注册相结合,以最少的人为交互产生逼真的模型。我们展示了大规模城市场景的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiview Geometry for Texture Mapping 2D Images Onto 3D Range Data
The photorealistic modeling of large-scale scenes, such as urban structures, requires a fusion of range sensing technology and traditional digital photography. This paper presents a system that integrates multiview geometry and automated 3D registration techniques for texture mapping 2D images onto 3D range data. The 3D range scans and the 2D photographs are respectively used to generate a pair of 3D models of the scene. The first model consists of a dense 3D point cloud, produced by using a 3D-to-3D registration method that matches 3D lines in the range images. The second model consists of a sparse 3D point cloud, produced by applying a multiview geometry (structure-from-motion) algorithm directly on a sequence of 2D photographs. This paper introduces a novel algorithm for automatically recovering the rotation, scale, and translation that best aligns the dense and sparse models. This alignment is necessary to enable the photographs to be optimally texture mapped onto the dense model. The contribution of this work is that it merges the benefits of multiview geometry with automated registration of 3D range scans to produce photorealistic models with minimal human interaction. We present results from experiments in large-scale urban scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1