基于边缘基元的压缩图像表示

Altergartenberg R., Huck F.O., Narayanswamy R.
{"title":"基于边缘基元的压缩图像表示","authors":"Altergartenberg R.,&nbsp;Huck F.O.,&nbsp;Narayanswamy R.","doi":"10.1006/cgip.1994.1001","DOIUrl":null,"url":null,"abstract":"<div><p>Bandpassed images, commonly used for edge detection, also retain information about intensities between the edge boundaries. Using the familiar Laplacian-of-Gaussian as a bandpass filter, we present a method to extract and code the edge-associated information (edge primitives) and recover an image representation with high structural fidelity. We demonstrate that the edge-primitives representation is compact and therefore can be coded with high compression ratios.</p></div>","PeriodicalId":100349,"journal":{"name":"CVGIP: Graphical Models and Image Processing","volume":"56 1","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cgip.1994.1001","citationCount":"8","resultStr":"{\"title\":\"Compact Image Representation by Edge Primitives\",\"authors\":\"Altergartenberg R.,&nbsp;Huck F.O.,&nbsp;Narayanswamy R.\",\"doi\":\"10.1006/cgip.1994.1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bandpassed images, commonly used for edge detection, also retain information about intensities between the edge boundaries. Using the familiar Laplacian-of-Gaussian as a bandpass filter, we present a method to extract and code the edge-associated information (edge primitives) and recover an image representation with high structural fidelity. We demonstrate that the edge-primitives representation is compact and therefore can be coded with high compression ratios.</p></div>\",\"PeriodicalId\":100349,\"journal\":{\"name\":\"CVGIP: Graphical Models and Image Processing\",\"volume\":\"56 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/cgip.1994.1001\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049965284710017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049965284710017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

通常用于边缘检测的带通图像也保留了边缘边界之间的强度信息。使用我们熟悉的拉普拉斯高斯滤波器作为带通滤波器,我们提出了一种提取和编码边缘相关信息(边缘原语)的方法,并恢复具有高结构保真度的图像表示。我们证明了边缘基元表示是紧凑的,因此可以用高压缩比编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact Image Representation by Edge Primitives

Bandpassed images, commonly used for edge detection, also retain information about intensities between the edge boundaries. Using the familiar Laplacian-of-Gaussian as a bandpass filter, we present a method to extract and code the edge-associated information (edge primitives) and recover an image representation with high structural fidelity. We demonstrate that the edge-primitives representation is compact and therefore can be coded with high compression ratios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Dynamic Approach for Finding the Contour of Bi-Level Images Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms Estimation of Edge Parameters and Image Blur Using Polynomial Transforms Binarization and Multithresholding of Document Images Using Connectivity Novel Deconvolution of Noisy Gaussian Filters with a Modified Hermite Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1