一种新的归一化有符号回归LMS算法

K. Takahashi, S. Mori
{"title":"一种新的归一化有符号回归LMS算法","authors":"K. Takahashi, S. Mori","doi":"10.1109/ICCS.1992.255075","DOIUrl":null,"url":null,"abstract":"The normalized signed regressor algorithm is the NLMS algorithm based on clipping of the input samples which are elements of the input data vector. In the new algorithm, a clipped sample is used to update coefficients when the absolute value of the sample is larger than the average of the absolute values of the input samples. Analysis shows that the proposed algorithm has better convergence characteristics than the conventional normalized signed regressor algorithm.<<ETX>>","PeriodicalId":223769,"journal":{"name":"[Proceedings] Singapore ICCS/ISITA `92","volume":"17 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new normalized signed regressor LMS algorithm\",\"authors\":\"K. Takahashi, S. Mori\",\"doi\":\"10.1109/ICCS.1992.255075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normalized signed regressor algorithm is the NLMS algorithm based on clipping of the input samples which are elements of the input data vector. In the new algorithm, a clipped sample is used to update coefficients when the absolute value of the sample is larger than the average of the absolute values of the input samples. Analysis shows that the proposed algorithm has better convergence characteristics than the conventional normalized signed regressor algorithm.<<ETX>>\",\"PeriodicalId\":223769,\"journal\":{\"name\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"volume\":\"17 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS.1992.255075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Singapore ICCS/ISITA `92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS.1992.255075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

归一化符号回归算法是基于输入样本的裁剪的NLMS算法,输入样本是输入数据向量的元素。在新算法中,当样本的绝对值大于输入样本绝对值的平均值时,使用剪切样本来更新系数。分析表明,该算法比传统的归一化符号回归算法具有更好的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new normalized signed regressor LMS algorithm
The normalized signed regressor algorithm is the NLMS algorithm based on clipping of the input samples which are elements of the input data vector. In the new algorithm, a clipped sample is used to update coefficients when the absolute value of the sample is larger than the average of the absolute values of the input samples. Analysis shows that the proposed algorithm has better convergence characteristics than the conventional normalized signed regressor algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of interconnected LANS with server/client configuration An enhanced approach to character recognition by Fourier descriptor A new error control techinque for the parallel combinatory spread spectrum communication system Pattern recognition using optical binary perceptron Fast VQ algorithm using scalar prequantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1