{"title":"曲面老化程序的开发算法","authors":"A. Volchenkov, L. Nikitina","doi":"10.30987/2782-5957-2023-2-12-18","DOIUrl":null,"url":null,"abstract":"The results of differential geometric modeling and laboratory studies of the burn-in of hardened materials for complex sculpted surfaces are presented. The criteria of high-performance burn-in are given. It is shown that for complex sculpted surfaces, the instantaneous wear rate can be considered in terms of the wear rate, which determines the intensity of removing wear particles during the burn-in of the part in accordance with the selected method. Another criterion for the burn-in productivity is the instantaneous wear rate. The obtained dependences allow improving the modes of technological burn-in of part materials according to the criterion of its productivity. Laboratory verification of the obtained modes makes it possible to formulate criteria conditions for highly efficient burn-in of hardened curved surfaces.","PeriodicalId":289189,"journal":{"name":"Transport engineering","volume":"476 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALGORITHM FOR DEVELOPING THE PROGRAM OF CURVED SURFACES BURN-IN\",\"authors\":\"A. Volchenkov, L. Nikitina\",\"doi\":\"10.30987/2782-5957-2023-2-12-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of differential geometric modeling and laboratory studies of the burn-in of hardened materials for complex sculpted surfaces are presented. The criteria of high-performance burn-in are given. It is shown that for complex sculpted surfaces, the instantaneous wear rate can be considered in terms of the wear rate, which determines the intensity of removing wear particles during the burn-in of the part in accordance with the selected method. Another criterion for the burn-in productivity is the instantaneous wear rate. The obtained dependences allow improving the modes of technological burn-in of part materials according to the criterion of its productivity. Laboratory verification of the obtained modes makes it possible to formulate criteria conditions for highly efficient burn-in of hardened curved surfaces.\",\"PeriodicalId\":289189,\"journal\":{\"name\":\"Transport engineering\",\"volume\":\"476 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/2782-5957-2023-2-12-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2782-5957-2023-2-12-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ALGORITHM FOR DEVELOPING THE PROGRAM OF CURVED SURFACES BURN-IN
The results of differential geometric modeling and laboratory studies of the burn-in of hardened materials for complex sculpted surfaces are presented. The criteria of high-performance burn-in are given. It is shown that for complex sculpted surfaces, the instantaneous wear rate can be considered in terms of the wear rate, which determines the intensity of removing wear particles during the burn-in of the part in accordance with the selected method. Another criterion for the burn-in productivity is the instantaneous wear rate. The obtained dependences allow improving the modes of technological burn-in of part materials according to the criterion of its productivity. Laboratory verification of the obtained modes makes it possible to formulate criteria conditions for highly efficient burn-in of hardened curved surfaces.