维间模糊聚类

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900127
Yong Shi
{"title":"维间模糊聚类","authors":"Yong Shi","doi":"10.1145/1900008.1900127","DOIUrl":null,"url":null,"abstract":"In this paper, we present our research on detecting clusters for multi-dimensional data using fuzzy concepts. Cluster analysis is an important sub-field in data mining. Many algorithms have been designed to detect clusters. However, it is difficult to analyze the inter-relationship among different dimensions. In this paper, we propose a novel approach to analyze and quantify the inter-relationship among correlated dimensions using the Fuzzy concept. A fuzzy concept is a concept of which the content, value, or boundaries of application can vary according to context or conditions, instead of being fixed once and for all. We apply the Fuzzy concept to help improve the clustering process.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"34 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inter-dimensional fuzzy clustering\",\"authors\":\"Yong Shi\",\"doi\":\"10.1145/1900008.1900127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our research on detecting clusters for multi-dimensional data using fuzzy concepts. Cluster analysis is an important sub-field in data mining. Many algorithms have been designed to detect clusters. However, it is difficult to analyze the inter-relationship among different dimensions. In this paper, we propose a novel approach to analyze and quantify the inter-relationship among correlated dimensions using the Fuzzy concept. A fuzzy concept is a concept of which the content, value, or boundaries of application can vary according to context or conditions, instead of being fixed once and for all. We apply the Fuzzy concept to help improve the clustering process.\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"34 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了利用模糊概念对多维数据进行聚类检测的研究。聚类分析是数据挖掘的一个重要分支。已经设计了许多算法来检测聚类。然而,很难分析不同维度之间的相互关系。在本文中,我们提出了一种利用模糊概念来分析和量化相关维度之间相互关系的新方法。模糊概念是一种概念,其内容、价值或应用的边界可以根据上下文或条件而变化,而不是一劳永逸地固定下来。我们应用模糊概念来帮助改进聚类过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inter-dimensional fuzzy clustering
In this paper, we present our research on detecting clusters for multi-dimensional data using fuzzy concepts. Cluster analysis is an important sub-field in data mining. Many algorithms have been designed to detect clusters. However, it is difficult to analyze the inter-relationship among different dimensions. In this paper, we propose a novel approach to analyze and quantify the inter-relationship among correlated dimensions using the Fuzzy concept. A fuzzy concept is a concept of which the content, value, or boundaries of application can vary according to context or conditions, instead of being fixed once and for all. We apply the Fuzzy concept to help improve the clustering process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching software engineering using open source software Dynamic ontology version control Visualization of the CreSIS Greenland data sets Java nano patterns: a set of reusable objects Towards power efficient consolidation and distribution of virtual machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1