基于网络的机器人无线局域网唤醒方法

Hamza Aagela, Taha Al-Jody, Violeta Holmes
{"title":"基于网络的机器人无线局域网唤醒方法","authors":"Hamza Aagela, Taha Al-Jody, Violeta Holmes","doi":"10.23919/IConAC.2018.8749046","DOIUrl":null,"url":null,"abstract":"The ability to wake up robots over a wireless LAN remotely can improve the power consumption performance of remote robots or cloud robotics system. This paper presents a solution for power management of a mobile robot, using web-based wireless Wake-on-LAN (WWoL). The focus in on power management of a mobile robot, but this approach is also suitable for most of the IoT mobile devices, and other systems that are designed to be used remotely. The proposed solution allows the targeted device to be powered ON and OFF remotely via a web-based dashboard. This approach was validated in a case study with an AR drone 2.0 and demonstrated substantial power optimization for the drone. In addition, security issues are explored when WWoL is deployed in remote control of mobile devices. It was established that power consumption is reduced when the drone is in a standby mode waiting for an operator to send a wake-on request message wirelessly, without compromising security posed by wireless remote access to the devices.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"42 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web-based Wireless Wake-on-LAN approach for Robots\",\"authors\":\"Hamza Aagela, Taha Al-Jody, Violeta Holmes\",\"doi\":\"10.23919/IConAC.2018.8749046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to wake up robots over a wireless LAN remotely can improve the power consumption performance of remote robots or cloud robotics system. This paper presents a solution for power management of a mobile robot, using web-based wireless Wake-on-LAN (WWoL). The focus in on power management of a mobile robot, but this approach is also suitable for most of the IoT mobile devices, and other systems that are designed to be used remotely. The proposed solution allows the targeted device to be powered ON and OFF remotely via a web-based dashboard. This approach was validated in a case study with an AR drone 2.0 and demonstrated substantial power optimization for the drone. In addition, security issues are explored when WWoL is deployed in remote control of mobile devices. It was established that power consumption is reduced when the drone is in a standby mode waiting for an operator to send a wake-on request message wirelessly, without compromising security posed by wireless remote access to the devices.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"42 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过无线局域网远程唤醒机器人的能力可以改善远程机器人或云机器人系统的功耗性能。本文提出了一种基于网络的无线局域网唤醒(WWoL)技术,用于移动机器人的电源管理。重点是移动机器人的电源管理,但这种方法也适用于大多数物联网移动设备,以及其他设计用于远程使用的系统。提出的解决方案允许目标设备通过基于web的仪表板远程打开和关闭电源。该方法在AR无人机2.0的案例研究中得到了验证,并证明了无人机的大量功率优化。此外,还探讨了在移动设备的远程控制中部署WWoL时的安全问题。经证实,当无人机处于待机模式,等待操作员无线发送唤醒请求消息时,功耗会降低,而不会影响无线远程访问设备所带来的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Web-based Wireless Wake-on-LAN approach for Robots
The ability to wake up robots over a wireless LAN remotely can improve the power consumption performance of remote robots or cloud robotics system. This paper presents a solution for power management of a mobile robot, using web-based wireless Wake-on-LAN (WWoL). The focus in on power management of a mobile robot, but this approach is also suitable for most of the IoT mobile devices, and other systems that are designed to be used remotely. The proposed solution allows the targeted device to be powered ON and OFF remotely via a web-based dashboard. This approach was validated in a case study with an AR drone 2.0 and demonstrated substantial power optimization for the drone. In addition, security issues are explored when WWoL is deployed in remote control of mobile devices. It was established that power consumption is reduced when the drone is in a standby mode waiting for an operator to send a wake-on request message wirelessly, without compromising security posed by wireless remote access to the devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1