变幅载荷谱下焊接接头的疲劳性能

Xu Liu, Yan-Hui Zhang, Bin Wang
{"title":"变幅载荷谱下焊接接头的疲劳性能","authors":"Xu Liu, Yan-Hui Zhang, Bin Wang","doi":"10.1115/pvp2019-93073","DOIUrl":null,"url":null,"abstract":"\n Offshore pipelines are generally subjected to variable amplitude (VA) loading in service due to waves or ocean currents. Welded joints often represent the most critical locations for fatigue cracking. Use of the current fatigue design guidance, for example, BS 7608, to assess fatigue performance of the welded joints in such structure may lead to inaccurate estimates depending on the nature of the VA loading spectrum. Further studies on the effect of VA loading spectra on fatigue performance of welded joints are needed. In this research, both uniaxial and 3-point bending fatigue tests were performed on non-load carrying fillet welded plates under VA loading spectra to investigate the effects of mean stress and the type of VA loading spectra. The influence of plate thickness was also investigated. Test results suggest that the spectrum with a high constant maximum tensile stress (cycling-down) could significantly degrade fatigue performance of welded joints, with the damage parameter D only at around 0.5. The severity of this type of loading spectrum depends on the mean stress level and the plate thickness. An analytical model has been developed to predict fatigue crack propagation (FCP) by considering the interaction of stresses in the loading spectrum. The model considers the impact of the mean stress generated by the preceding load on FCP in the subsequent cycles. FCP predicted by the model shows a good agreement with the experimental data.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Performance of Welded Joints Under Variable Amplitude Loading Spectra\",\"authors\":\"Xu Liu, Yan-Hui Zhang, Bin Wang\",\"doi\":\"10.1115/pvp2019-93073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Offshore pipelines are generally subjected to variable amplitude (VA) loading in service due to waves or ocean currents. Welded joints often represent the most critical locations for fatigue cracking. Use of the current fatigue design guidance, for example, BS 7608, to assess fatigue performance of the welded joints in such structure may lead to inaccurate estimates depending on the nature of the VA loading spectrum. Further studies on the effect of VA loading spectra on fatigue performance of welded joints are needed. In this research, both uniaxial and 3-point bending fatigue tests were performed on non-load carrying fillet welded plates under VA loading spectra to investigate the effects of mean stress and the type of VA loading spectra. The influence of plate thickness was also investigated. Test results suggest that the spectrum with a high constant maximum tensile stress (cycling-down) could significantly degrade fatigue performance of welded joints, with the damage parameter D only at around 0.5. The severity of this type of loading spectrum depends on the mean stress level and the plate thickness. An analytical model has been developed to predict fatigue crack propagation (FCP) by considering the interaction of stresses in the loading spectrum. The model considers the impact of the mean stress generated by the preceding load on FCP in the subsequent cycles. FCP predicted by the model shows a good agreement with the experimental data.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于波浪或洋流的影响,海上管道在使用中通常会受到变振幅(VA)载荷的影响。焊接接头通常是疲劳开裂的最关键部位。使用当前的疲劳设计指南,例如BS 7608,来评估这种结构中焊接接头的疲劳性能可能会导致不准确的估计,这取决于VA载荷谱的性质。VA载荷谱对焊接接头疲劳性能的影响有待进一步研究。通过对无载角焊板在VA加载谱下进行单轴和三点弯曲疲劳试验,研究了平均应力和VA加载谱类型的影响。研究了板厚的影响。试验结果表明,较高的恒定最大拉应力(循环下降)谱可以显著降低焊接接头的疲劳性能,损伤参数D仅在0.5左右。这种载荷谱的严重程度取决于平均应力水平和板厚。建立了考虑载荷谱中应力相互作用的疲劳裂纹扩展分析模型。该模型考虑了前一次荷载产生的平均应力对后续循环FCP的影响。模型预测的FCP与实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Performance of Welded Joints Under Variable Amplitude Loading Spectra
Offshore pipelines are generally subjected to variable amplitude (VA) loading in service due to waves or ocean currents. Welded joints often represent the most critical locations for fatigue cracking. Use of the current fatigue design guidance, for example, BS 7608, to assess fatigue performance of the welded joints in such structure may lead to inaccurate estimates depending on the nature of the VA loading spectrum. Further studies on the effect of VA loading spectra on fatigue performance of welded joints are needed. In this research, both uniaxial and 3-point bending fatigue tests were performed on non-load carrying fillet welded plates under VA loading spectra to investigate the effects of mean stress and the type of VA loading spectra. The influence of plate thickness was also investigated. Test results suggest that the spectrum with a high constant maximum tensile stress (cycling-down) could significantly degrade fatigue performance of welded joints, with the damage parameter D only at around 0.5. The severity of this type of loading spectrum depends on the mean stress level and the plate thickness. An analytical model has been developed to predict fatigue crack propagation (FCP) by considering the interaction of stresses in the loading spectrum. The model considers the impact of the mean stress generated by the preceding load on FCP in the subsequent cycles. FCP predicted by the model shows a good agreement with the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1