预训练的语言模型能生成有说服力的、忠实的、信息丰富的产品描述广告文本吗?

Fajri Koto, Jey Han Lau, Timothy Baldwin
{"title":"预训练的语言模型能生成有说服力的、忠实的、信息丰富的产品描述广告文本吗?","authors":"Fajri Koto, Jey Han Lau, Timothy Baldwin","doi":"10.18653/v1/2022.ecnlp-1.27","DOIUrl":null,"url":null,"abstract":"For any e-commerce service, persuasive, faithful, and informative product descriptions can attract shoppers and improve sales. While not all sellers are capable of providing such interesting descriptions, a language generation system can be a source of such descriptions at scale, and potentially assist sellers to improve their product descriptions. Most previous work has addressed this task based on statistical approaches (Wang et al., 2017), limited attributes such as titles (Chen et al., 2019; Chan et al., 2020), and focused on only one product type (Wang et al., 2017; Munigala et al., 2018; Hong et al., 2021). In this paper, we jointly train image features and 10 text attributes across 23 diverse product types, with two different target text types with different writing styles: bullet points and paragraph descriptions. Our findings suggest that multimodal training with modern pretrained language models can generate fluent and persuasive advertisements, but are less faithful and informative, especially out of domain.","PeriodicalId":384006,"journal":{"name":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","volume":"57 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product Descriptions?\",\"authors\":\"Fajri Koto, Jey Han Lau, Timothy Baldwin\",\"doi\":\"10.18653/v1/2022.ecnlp-1.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any e-commerce service, persuasive, faithful, and informative product descriptions can attract shoppers and improve sales. While not all sellers are capable of providing such interesting descriptions, a language generation system can be a source of such descriptions at scale, and potentially assist sellers to improve their product descriptions. Most previous work has addressed this task based on statistical approaches (Wang et al., 2017), limited attributes such as titles (Chen et al., 2019; Chan et al., 2020), and focused on only one product type (Wang et al., 2017; Munigala et al., 2018; Hong et al., 2021). In this paper, we jointly train image features and 10 text attributes across 23 diverse product types, with two different target text types with different writing styles: bullet points and paragraph descriptions. Our findings suggest that multimodal training with modern pretrained language models can generate fluent and persuasive advertisements, but are less faithful and informative, especially out of domain.\",\"PeriodicalId\":384006,\"journal\":{\"name\":\"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)\",\"volume\":\"57 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.ecnlp-1.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.ecnlp-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于任何电子商务服务来说,有说服力的、忠实的、信息丰富的产品描述都能吸引顾客,提高销售额。虽然不是所有的卖家都有能力提供如此有趣的描述,但语言生成系统可以成为大规模描述的来源,并有可能帮助卖家改进他们的产品描述。之前的大多数工作都是基于统计方法(Wang et al., 2017)和有限的属性(如标题)来解决这个问题的(Chen et al., 2019;Chan et al., 2020),并且只关注一种产品类型(Wang et al., 2017;Munigala et al., 2018;Hong et al., 2021)。在本文中,我们共同训练了23种不同产品类型的图像特征和10个文本属性,使用了两种不同的写作风格的目标文本类型:项目符号和段落描述。我们的研究结果表明,使用现代预训练语言模型进行多模式训练可以生成流畅和有说服力的广告,但缺乏可信度和信息量,特别是在域外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product Descriptions?
For any e-commerce service, persuasive, faithful, and informative product descriptions can attract shoppers and improve sales. While not all sellers are capable of providing such interesting descriptions, a language generation system can be a source of such descriptions at scale, and potentially assist sellers to improve their product descriptions. Most previous work has addressed this task based on statistical approaches (Wang et al., 2017), limited attributes such as titles (Chen et al., 2019; Chan et al., 2020), and focused on only one product type (Wang et al., 2017; Munigala et al., 2018; Hong et al., 2021). In this paper, we jointly train image features and 10 text attributes across 23 diverse product types, with two different target text types with different writing styles: bullet points and paragraph descriptions. Our findings suggest that multimodal training with modern pretrained language models can generate fluent and persuasive advertisements, but are less faithful and informative, especially out of domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Seq2seq Language Generation for Multi-level Product Issue Identification Data Quality Estimation Framework for Faster Tax Code Classification semiPQA: A Study on Product Question Answering over Semi-structured Data Clause Topic Classification in German and English Standard Form Contracts Can Pretrained Language Models Generate Persuasive, Faithful, and Informative Ad Text for Product Descriptions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1