用于预测建模的数据帧处理器

N. Zumel, J. Mount
{"title":"用于预测建模的数据帧处理器","authors":"N. Zumel, J. Mount","doi":"10.5281/ZENODO.1173314","DOIUrl":null,"url":null,"abstract":"We look at common problems found in data that is used for predictive modeling tasks, and describe how to address them with the vtreat R package. vtreat prepares real-world data for predictive modeling in a reproducible and statistically sound manner. We describe the theory of preparing variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems dealt with include: infinite values, invalid values, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Of special interest are techniques needed to avoid needlessly introducing undesirable nested modeling bias (which is a risk when using a data-preprocessor).","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"vtreat: a data.frame Processor for Predictive Modeling\",\"authors\":\"N. Zumel, J. Mount\",\"doi\":\"10.5281/ZENODO.1173314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We look at common problems found in data that is used for predictive modeling tasks, and describe how to address them with the vtreat R package. vtreat prepares real-world data for predictive modeling in a reproducible and statistically sound manner. We describe the theory of preparing variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems dealt with include: infinite values, invalid values, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Of special interest are techniques needed to avoid needlessly introducing undesirable nested modeling bias (which is a risk when using a data-preprocessor).\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1173314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1173314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们将查看用于预测建模任务的数据中发现的常见问题,并描述如何使用vtreat R包解决这些问题。Vtreat准备真实世界的数据,以可重复和统计合理的方式进行预测建模。我们描述了准备变量的理论,以便数据具有更少的异常情况,从而更容易在生产中安全地使用模型。处理的常见问题包括:无限值、无效值、NA、太多的分类级别、罕见的分类级别和新的分类级别(在应用程序期间看到的级别,而不是在训练期间看到的级别)。需要特别关注的是避免不必要地引入不受欢迎的嵌套建模偏差(这在使用数据预处理器时是一种风险)所需的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
vtreat: a data.frame Processor for Predictive Modeling
We look at common problems found in data that is used for predictive modeling tasks, and describe how to address them with the vtreat R package. vtreat prepares real-world data for predictive modeling in a reproducible and statistically sound manner. We describe the theory of preparing variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems dealt with include: infinite values, invalid values, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Of special interest are techniques needed to avoid needlessly introducing undesirable nested modeling bias (which is a risk when using a data-preprocessor).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1