Tara Boroushaki, I. Perper, Mergen Nachin, Alberto Rodriguez, Fadel M. Adib
{"title":"RFusion","authors":"Tara Boroushaki, I. Perper, Mergen Nachin, Alberto Rodriguez, Fadel M. Adib","doi":"10.1145/3485730.3485944","DOIUrl":null,"url":null,"abstract":"We present the design, implementation, and evaluation of RFusion, a robotic system that can search for and retrieve RFID-tagged items in line-of-sight, non-line-of-sight, and fully-occluded settings. RFusion consists of a robotic arm that has a camera and antenna strapped around its gripper. Our design introduces two key innovations: the first is a method that geometrically fuses RF and visual information to reduce uncertainty about the target object's location, even when the item is fully occluded. The second is a novel reinforcement-learning network that uses the fused RF-visual information to efficiently localize, maneuver toward, and grasp target items. We built an end-to-end prototype of RFusion and tested it in challenging real-world environments. Our evaluation demonstrates that RFusion localizes target items with centimeter-scale accuracy and achieves 96% success rate in retrieving fully occluded objects, even if they are under a pile. The system paves the way for novel robotic retrieval tasks in complex environments such as warehouses, manufacturing plants, and smart homes.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"RFusion\",\"authors\":\"Tara Boroushaki, I. Perper, Mergen Nachin, Alberto Rodriguez, Fadel M. Adib\",\"doi\":\"10.1145/3485730.3485944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design, implementation, and evaluation of RFusion, a robotic system that can search for and retrieve RFID-tagged items in line-of-sight, non-line-of-sight, and fully-occluded settings. RFusion consists of a robotic arm that has a camera and antenna strapped around its gripper. Our design introduces two key innovations: the first is a method that geometrically fuses RF and visual information to reduce uncertainty about the target object's location, even when the item is fully occluded. The second is a novel reinforcement-learning network that uses the fused RF-visual information to efficiently localize, maneuver toward, and grasp target items. We built an end-to-end prototype of RFusion and tested it in challenging real-world environments. Our evaluation demonstrates that RFusion localizes target items with centimeter-scale accuracy and achieves 96% success rate in retrieving fully occluded objects, even if they are under a pile. The system paves the way for novel robotic retrieval tasks in complex environments such as warehouses, manufacturing plants, and smart homes.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3485944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3485944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present the design, implementation, and evaluation of RFusion, a robotic system that can search for and retrieve RFID-tagged items in line-of-sight, non-line-of-sight, and fully-occluded settings. RFusion consists of a robotic arm that has a camera and antenna strapped around its gripper. Our design introduces two key innovations: the first is a method that geometrically fuses RF and visual information to reduce uncertainty about the target object's location, even when the item is fully occluded. The second is a novel reinforcement-learning network that uses the fused RF-visual information to efficiently localize, maneuver toward, and grasp target items. We built an end-to-end prototype of RFusion and tested it in challenging real-world environments. Our evaluation demonstrates that RFusion localizes target items with centimeter-scale accuracy and achieves 96% success rate in retrieving fully occluded objects, even if they are under a pile. The system paves the way for novel robotic retrieval tasks in complex environments such as warehouses, manufacturing plants, and smart homes.