一种基于脑电图功率谱的人工神经网络方法,用于癫痫发作的医疗辅助分类

Dionathan Luan de Vargas, J. Oliva, M. Teixeira
{"title":"一种基于脑电图功率谱的人工神经网络方法,用于癫痫发作的医疗辅助分类","authors":"Dionathan Luan de Vargas, J. Oliva, M. Teixeira","doi":"10.5753/sbcas.2021.16060","DOIUrl":null,"url":null,"abstract":"A epilepsia é a quarta enfermidade neurológica mais comum e atinge aproximadamente 1% da população mundial. O diagnóstico é, em geral, amparado por um eletroencefalograma (EEG), cuja análise depende da interpretação médica, o que por vezes gera incongruência de diagnóstico, além de ser um trabalho tedioso, impreciso e propenso a erros. Este trabalho propõe um método de reconhecimento automático de padrões baseado em aprendizado de máquina e engenharia de características aplicadas ao espectros de potência de segmentos de EEGs. Resultados sugerem a possibilidade de detectar crises epilépticas com uma precisão superior a 80% em bases de dados já utilizadas na literatura.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uma abordagem baseada em redes neurais artificiais sobre o espectro de potência de eletroencefalogramas para o auxílio médico na classificação de crises epiléticas\",\"authors\":\"Dionathan Luan de Vargas, J. Oliva, M. Teixeira\",\"doi\":\"10.5753/sbcas.2021.16060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A epilepsia é a quarta enfermidade neurológica mais comum e atinge aproximadamente 1% da população mundial. O diagnóstico é, em geral, amparado por um eletroencefalograma (EEG), cuja análise depende da interpretação médica, o que por vezes gera incongruência de diagnóstico, além de ser um trabalho tedioso, impreciso e propenso a erros. Este trabalho propõe um método de reconhecimento automático de padrões baseado em aprendizado de máquina e engenharia de características aplicadas ao espectros de potência de segmentos de EEGs. Resultados sugerem a possibilidade de detectar crises epilépticas com uma precisão superior a 80% em bases de dados já utilizadas na literatura.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫是第四大最常见的神经系统疾病,约占世界人口的1%。诊断通常由脑电图(EEG)支持,其分析依赖于医学解释,这有时会产生诊断不一致,而且是一项乏味、不准确和容易出错的工作。本文提出了一种基于机器学习和特征工程的自动模式识别方法,并将其应用于egs段功率谱。结果表明,在文献中使用的数据库中检测癫痫发作的准确率超过80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uma abordagem baseada em redes neurais artificiais sobre o espectro de potência de eletroencefalogramas para o auxílio médico na classificação de crises epiléticas
A epilepsia é a quarta enfermidade neurológica mais comum e atinge aproximadamente 1% da população mundial. O diagnóstico é, em geral, amparado por um eletroencefalograma (EEG), cuja análise depende da interpretação médica, o que por vezes gera incongruência de diagnóstico, além de ser um trabalho tedioso, impreciso e propenso a erros. Este trabalho propõe um método de reconhecimento automático de padrões baseado em aprendizado de máquina e engenharia de características aplicadas ao espectros de potência de segmentos de EEGs. Resultados sugerem a possibilidade de detectar crises epilépticas com uma precisão superior a 80% em bases de dados já utilizadas na literatura.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uma Avaliação de Arquiteturas de Aprendizado Profundo para a Classificação de Úlceras do Pé Diabético CitoFocus: Uma Plataforma para Colaboração e Aprendizado em Citopatologia Detecção de Nódulos da Tireoide em Exames de Termografia utilizando Redes Neurais Convolucionais em Cascata Veículo Autônomo Guiado para Entrega de Máscaras de Proteção no Ambiente Industrial Jogos Digitais e Engajamento na Reabilitação de Pacientes: Uma Revisão Sistemática da Literatura
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1